Question	Scheme		Marks	AOs
9(a)	$y = \frac{1}{x^x} \Longrightarrow \ln y = \ln 1 - \ln x^x$	$y = x^{-x} \Longrightarrow \ln y = \ln x^{-x}$	M1	1.1b
	ln y = -x ln x *		A1*	2.1
			(2)	
(b)	$ \ln y \to \frac{1}{y} \frac{\mathrm{d}y}{\mathrm{d}x} $		M1	1.1b
	$-x \ln x \rightarrow -\ln x - 1$		M1	1.1b
	$\frac{1}{x^{-x}}\frac{\mathrm{d}y}{\mathrm{d}x} = -\ln x - 1 \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -x^{-x} \left(\ln x + 1\right) *$		A1*	2.1
			(3)	
(c)	Sets $-x^{-x} (\ln x + 1) = 0$ proceeding to $x = e^{-1}$ Attempts $y = \frac{1}{(e^{-1})^{e^{-1}}}$		M1	3.1a
			dM1	1.1b
	$\left(e^{-1},e^{e^{-1}}\right)$	or $\left(\frac{1}{e}, e^{\frac{1}{e}}\right)$	A1	2.5
			(3)	
(d)	Either $g(x)($) or $g(x)e^{e^{-1}}$	M1	2.2a
	0 < g(x)	$) \leqslant e^{e^{-1}}$	A1	2.5
			(2)	
(10 m				narks)
Notes:				
(a) M1: Way 1: Takes logs of both sides and uses the subtraction law correctly;				
Way 2: Rewrites $\frac{1}{r^x}$ as x^{-x} and takes logs of both sides.				
x^x A1*: Proceeds to the given result with a valid method and no errors.				
Must see ln in at least one step prior to the given answer.				
(b)				
M1: Differentiates the left hand side implicitly to the form $\frac{dy}{dx}$				
M1: Differentiates the right hand side using the product rule to the form $ \ln x$				
A1*: Proceeds to the given result with a valid method and no errors. x^{-x} must be seen substituted				
before the given answer is seen unless e.g. $\frac{dy}{dx} = -y(\ln x + 1)$ seen instead.				

M1: Sets
$$\{-x^{-x}\}(\ln x + 1) = 0$$
 proceeding to $x = ...$
dM1: Substitutes their x into $y = x^{-x}$ or $y = \frac{1}{x^x}$
A1: Correct coordinates in exact form as in the main scheme. Allow $x = ...$ and $y = ...$

(d)
M1: Either "end" found. Ignore inequalities for this mark.

A1: $0 < g(x) \le e^{e^{-1}}$ o.e. e.g. $0 < g(x) \le e^{\frac{1}{e}}$

(c)