13(a)	$\int x \sin 3x dx = -\dots x \cos 3x + \dots \int \cos 3x dx$ $\int x \sin 3x dx = -\dots x \cos 3x + \dots \sin 3x$	M1	1.1b
	•		
	. 1 1	dM1	1.1b
	$\int x \sin 3x dx = -\frac{1}{3} x \cos 3x + \frac{1}{9} \sin 3x \{+c\}$	A1	1.1b
		(3)	
	Separates the variables: $\int \frac{1}{y^3} dy = \int x \sin 3x dx \text{ and}$	M1	3.1a
	integrates $ -\frac{1}{2}y^{-2} = -\frac{1}{3}x\cos 3x + \frac{1}{9}\sin 3x + c $		
	$-\frac{1}{2} \left(\frac{1}{2}\right)^{-2} = -\frac{1}{3} \left(\frac{\pi}{6}\right) \cos\left(\frac{3\pi}{6}\right) + \frac{1}{9} \sin\left(\frac{3\pi}{6}\right) + c \text{ leading to } c = \dots$	M1	1.1b
	$y^{-2} = \pmx \cos 3x \pm\sin 3x \{+c\}$ $y^{2} = \frac{\pm}{\pmx \cos 3x \pm\sin 3x \pm}$	dM1	1.1b
	$y^2 = \frac{9}{6x\cos 3x - 2\sin 3x + 38}$	A1	2.1
		(4)	
(7 marks)			
Notes:			
(a) M1: Uses integration by parts the correct way round to $\int x \sin 3x dx =x \cos 3x + \int \cos 3x dx$			
If the formula is not stated or $u =, \frac{dv}{dx} =$ etc. not shown then the signs must be correct to			
imply the method. dM1: Completes the integration $x\cos 3x +\sin 3x$			
A1: $-\frac{1}{3}x\cos 3x + \frac{1}{9}\sin 3x \left\{+c\right\}$ with or without the $+c$			
(b)			
M1: Separates the variables: $\int \frac{1}{y^3} dy = \int x \sin 3x dx$ and attempts to integrate both sides using their			
result from (a) which must result in the form $y^{-2} = \pmx \cos 3x \pm\sin 3x \{+c\}$			
M1: Substitutes in the boundary conditions $x = \frac{\pi}{6}$ and $y = \frac{1}{2}$ leading to a value for c			
May be scored following rearrangement. Note that the correct value $c = -\frac{19}{9}$			
dM1: Makes y^2 the subject of the equation using correct algebra but condone slips. Dependent on the first method mark, so the correct form is required but c may not have been			

found.

 $6x\cos 3x - 2\sin 3x + 38$

o.e. in form $y^2 = ...$, e.g., $y^2 = -$

and isw.