| 6. | (i) | A student investigates a curve with equation $y = f(x)$. | | |----|------|--|-----| | | | The student finds that $f(4) = 0.98$ and $f(5) = 4.2$ | | | | | The student concludes that the equation $f(x) = 0$ has no roots between $x = 4$ and $x = 5$ Explain why the student might not be correct. | (1) | | | (ii) | Figure 2 on page 13 shows a plot of a different curve with equation $y = g(x)$, where | | | | | $g(x) = \frac{5}{2}x^2 - e^x + 4$ | | | | | (a) Find $g'(x)$ | (2) | | | | The curve crosses the x-axis at $x = \alpha$, where $3 < \alpha < 4$ | | | | | (b) Starting with $x_0 = 4$ apply the Newton–Raphson method once to $g(x)$ to obtain a second approximation to α | | | | | Show your working and give your answer to 3 significant figures. | (2) | | | | (c) Draw an appropriate line on Figure 2 to show that the Newton–Raphson method starting with $x_0 = 2$ does not give a good second approximation to α | (1) | | | | | (-) | Figure 2