Questic	Scheme	Marks	AOs	
4(a)	$u_1 = 6 \Rightarrow u_2 = 6k - 5$			
	$u_2 = 6k - 5 \Rightarrow u_3 = k(6k - 5) - 5$	M1	1.1b	
	$\Rightarrow k(6k-5)-5=-1$			
	$\Rightarrow 6k^2 - 5k - 4 = 0*$	A1*	2.1	
		(2)		
	Alternative:			
	$u_3 = -1 \Rightarrow -1 = ku_2 - 5 \Rightarrow u_2 = \frac{4}{k}$	M1	1.1b	
	$u_1 = 6 \Rightarrow u_2 = 6k - 5 \Rightarrow \frac{4}{k} = 6k - 5$ $\Rightarrow 6k^2 - 5k - 4 = 0*$			
	$\Rightarrow 6k^2 - 5k - 4 = 0*$	A1*	2.1	
(b)(i)	$k = \frac{4}{3}$	B1	2.2a	
(ii)	$k = \frac{4}{3} \Rightarrow u_2 = \frac{4}{3} \times 6 - 5 \Rightarrow \sum_{r=1}^{3} u_r = 6 + \frac{4}{3} \times 6 - 5 - 1$	M1	1.1b	
	$\sum_{r=1}^{3} u_r = 8$	A1	1.1b	
		(3)		
	(5 marks)			
Notes (a)				
M1: Correct application of the given recurrence relation using $u_1 = 6$ to find u_2 and then u_3 in terms of k and sets $u_3 = -1$				
A1*:	This is a given answer so do not condone slips/missing brackets unless they are recovered before the final printed answer.			
Alternative: M1: Correct application of the given recurrence relation using $u_3 = -1$ to find u_2 in terms of k				
	and then uses $u_1 = 6$ to find another expression for u_2 in terms of k and equates the 2 expressions. Obtains the printed answer with no errors including the "= 0"			
(b)(i)				

Deduces the correct value of k. Ignore any working and just look for this value. **B1**: Allow equivalent exact values e.g. $1\frac{1}{3}$ or 1.3 but not clearly rounded e.g. 1.333 It must be clear that $k = \frac{4}{3}$ is selected so if both roots are offered score B0 unless $k = \frac{4}{3}$ is clearly intended by the calculation in part (ii)

M1: Attempts the second term by e.g. (their
$$k$$
)×6-5 and then adds 6 and -1 to their second term. E.g. $6+\frac{4}{3}$ "×6-5-1

If they use u_1 and u_3 they must be as given in the question but condone a clear mis-copy of their u_2 value.

The attempt at the second term may be implied by their value.

Note that they may use $u_3 = -1$ to find u_2 e.g. $-1 = \frac{4}{3}u_2 - 5 \Rightarrow u_2 = \frac{3}{4}(5 - 1) = 3$

Condone slips when rearranging as long as the intention is clear. The attempt at the second term may be seen embedded in their attempt at the sum e.g.

$$\sum_{r=1}^{3} u_r = 6 + \frac{4}{3} \times 6 - 5 - 1 \text{ or e.g. } \sum_{r=1}^{3} u_r = 6 + \frac{3}{4} (5 - 1) - 1$$

If they use both of their values for k allow M1.

(ii)

Alternatives:

Note that
$$\sum_{r=1}^{3} u_r = 6 + 6k - 5 - 1 = 6k$$
 so you may just see an attempt at $6k$ with their $\frac{4}{3}$.
Note that $\sum_{r=1}^{3} u_r = 6k^2 + k - 4$ so you may just see an attempt at $6k^2 + k - 4$ with their $\frac{4}{3}$.

A1: Correct value of 8 and no other values unless rejected. Correct answer with no working scores both marks. Allow recovery from an inexact value from part (i) e.g. 1.333