Question	Scheme	Marks	AOs	
6(a)(i)	$(f'(x) =) 8xe^{4x^2 - 1}$ or e.g. $\frac{8xe^{4x^2}}{e}$ oe	B1	1.1b	
(ii)	$(g'(x) =)\frac{8}{x}$ or e.g. $8x^{-1}$ oe	B1	1.2	
		(2)		
(b)	$8xe^{4x^2-1} = \frac{8}{x} \Longrightarrow e^{4x^2-1} = \frac{1}{x^2} \Longrightarrow 4x^2 - 1 = \ln\frac{1}{x^2}$	M1	1.1b	
	$4x^{2} - 1 = \ln \frac{1}{x^{2}} \Longrightarrow 4x^{2} - 1 = -2\ln x$ $\Longrightarrow 4x^{2} + 2\ln x - 1 = 0^{*}$	A1*	2.1	
		(2)		
(c)(i)	$x_1 = 0.6 \Longrightarrow x_2 = \sqrt{\frac{1 - 2\ln 0.6}{4}}$	M1	1.1b	
	$(x_2 =)0.7109$	A1	1.1b	
(ii)	$(\alpha =) 0.6706$	B1 (A1 In ePEN)	1.1b	
		(3)		
	(7 marks)			

(a)(i)

B1: Correct derivative in any form. "f'(x) =" is not required. Apply isw if necessary. (ii)

B1: Correct derivative in any form. "g'(x) = " is not required. Apply isw if necessary.

(b)

M1: Eliminates e by setting their f'(x) = their g'(x) where $f'(x) = Axe^{4x^2-1}$ oe and

 $g'(x) = \frac{B}{x}$ or with $A \times B > 0$ and proceeds via $e^{4x^2 - 1} = \frac{\dots}{x^2}$ or equivalent work (see below) to obtain $4x^2 - 1 = \ln \frac{\dots}{x^2}$ or e.g. $\ln x + 4x^2 - 1 = \ln \frac{1}{x}$

Allow if they use α for *x*.

Note that there are various alternatives for this mark but the derivatives must be of the form defined above and the processing must be correct with coefficient/sign slips only. **Examples of equivalent work:**

$$8xe^{4x^2-1} = \frac{8}{x} \Rightarrow x^2e^{4x^2-1} = 1 \Rightarrow \ln x^2 + \ln e^{4x^2-1} = 0 \Rightarrow \ln e^{4x^2-1} = -\ln x^2 \Rightarrow 4x^2 - 1 = -2\ln x$$
$$\frac{8xe^{4x^2}}{e} = \frac{8}{x} \Rightarrow \frac{1}{e}e^{4x^2} = \frac{1}{x^2} \Rightarrow e^{4x^2} = \frac{e}{x^2} \Rightarrow \ln e^{4x^2} = \ln \frac{e}{x^2} \Rightarrow 4x^2 = \ln \frac{e}{x^2} = 1 - 2\ln x$$

A1*: Obtains the printed answer with sufficient working and no errors. Sufficient work would require the "e" eliminated before the given answer. Must follow correct derivatives in part (a). Condone 4x² + 2ln |x|-1=0 and condone 4α² + 2ln α -1=0 or 4α² + 2ln |α|-1=0 Note that if both derivatives in (a) <u>are correct</u> we will allow fully correct work using the equation in (b) to work backwards to verify that pf'(x) = qg'(x) for M1 then obtains

f'(x) = g'(x) with a minimal conclusion for A1

If either derivative in (a) is incorrect or missing, candidates who work backwards score no marks in (b).

(c)(i)/(ii)

M1: Attempts to use the iterative formula with $x_1 = 0.6$

Award this mark for e.g. $(x_2 =)\sqrt{\frac{1-2\ln 0.6}{4}}$ or may be implied by awrt 0.71 provided no

incorrect working is seen.

Candidates sometimes find x_3 (or possibly subsequent terms) rather than x_2 in which case the M1 can be implied. (See table below for first few iterations)

A1: $(x_2 =)$ awrt 0.7109

Sight of ($x_2 =$) awrt 0.7109 scores M1A1

B1(A1 on ePEN): ($\alpha =$) 0.6706 (4dp)

Must be this value and not awrt 0.6706

For reference:

x_1	0.6
x_2	0.7109239143
<i>x</i> ₃	0.6485329086
x_4	0.6830236199
<i>X</i> 5	0.6637868021
x_6	0.6744606223
•	•
•	
•	•
α	0.6706416243