Question	Scheme	Marks	AOs
9(a)	$H = \pm ax^2 \pm bx \pm c$		
Way 1	$x = 0, H = 2 \Longrightarrow c = 2$		
	and either		
	$x = 20, H = 0.8 \Longrightarrow 0.8 = 400a + 20b + 2$		
	or	M1	3.3
	$H = ax^{2} + bx + c \Longrightarrow \frac{\mathrm{d}H}{\mathrm{d}x} = 2ax + b$		
	$x = 9, \frac{\mathrm{d}H}{\mathrm{d}x} = 0 \Longrightarrow 18a + b = 0$		
	$H = \pm ax^2 \pm bx \pm c$		
	$x = 0, H = 2 \Longrightarrow c = 2$		
	and		
	$x = 20, H = 0.8 \Longrightarrow 0.8 = 20^2 a + 20b + 2$		
	and	dM1	3.1b
	$H = ax^{2} + bx + c \Longrightarrow \frac{\mathrm{d}H}{\mathrm{d}x} = 2ax + b$		
	$x = 9, \frac{\mathrm{d}H}{\mathrm{d}x} = 0 \Longrightarrow 18a + b = 0$		
	$0.8 = 400a + 20b + 2, 18a + b = 0 \Longrightarrow a = \dots, b = \dots$	ddM1	1.1b
	$H = -0.03x^2 + 0.54x + 2$	A1	2.2a
		(4)	

(a) Way 1 Notes

Condone use of *y* for *H* for the <u>method</u> marks.

A model of the form $H = x^2 + ax + b$ or $H = -x^2 + ax + b$ will score no marks. Note that it is possible to identify (by symmetry) that the points (-2, 0.8) and (18, 2) also lie on the parabola so you may see valid use of these points.

M1: Uses the equation $H = \pm ax^2 \pm bx \pm c$ to model the path and uses x = 0 and H = 2 correctly placed to establish the value of the constant term and uses x = 20 and H = 0.8 or $x = 9, \frac{dH}{dx} = 0$ to give an equation in 'a' and 'b' with $\frac{dH}{dx}$ of the form $...\alpha x + \beta$

An alternative is to recognise that the maximum occurs when $x = -\frac{b}{2a} = 9$ or equivalent

e.g. maximum when $x = 9 \Rightarrow H = a(x-9)^2 + ... = ax^2 - 18ax + ... \Rightarrow b = -18a$

Award for $\pm \frac{b}{2a} = 9$ or equivalent.

They may also use e.g. (-2, 0.8) or (18, 2) to give an equation in *a* and *b*. **dM1:** This mark requires:

- uses the equation $H = \pm ax^2 \pm bx \pm c$ to model the path and uses x = 0 and H = 2 correctly placed to establish the value of the constant term
- uses x = 20 and H = 0.8 correctly placed and x = 9, $\frac{dH}{dx} = 0$ to give 2 equations in 'a'

and 'b' with
$$\frac{dH}{dx}$$
 of the form ... $ax + b$ or as above using $\pm \frac{b}{2a} = 9$

They may also use e.g. (-2, 0.8) or (18, 2) to give an equation in *a* and *b*. **ddM1:** Solves their 2 equations in "*a*" and "*b*" to find their '*a*' and '*b*'.

This may be done on a calculator. You do **not** need to check their method for solving.

A1: Correct equation. Must be $H = f(x)$.							
(a)	$x = 9$ at max $\Rightarrow H = A \pm B(x-9)^2$						
Way 2	and either						
	$x = 0, H = 2 \Longrightarrow 2 = A + 81B$	M1	3.3				
	or						
	$x = 20, H = 0.8 \Longrightarrow 0.8 = A + 121B$						
	$x = 9$ at max $\Rightarrow H = A + B(x-9)^2$						
	and						
	$x = 0, H = 2 \Longrightarrow 2 = A + 81B$	dM1	3.1b				
	and						
	$x = 20, H = 0.8 \Longrightarrow 0.8 = A + 121B$						
	$2 = A + 81B, \ 0.8 = A + 121B \Longrightarrow A = 4.43, B = -0.03$	ddM1	1.1b				
	$H = 4.43 - 0.03(x - 9)^2$	A1	2.2a				
		(4)					
	(a) Way 2 Notes						
	Condone use of y for H for the <u>method</u> marks.						
	A model of the form $H = A \pm (x-9)^2$ will score no marks.						
M1: Uses the equation $H = A \pm B(x-9)^2$ or $H = A \pm B(9-x)^2$ to model the path and uses one							
of the 'end points' correctly placed to give an equation in 'A' and 'B' They may also use $a \in (2, 0, 8)$ or $(18, 2)$ to give an equation in A and B							
They may also use e.g. (-2, 0.8) or (18, 2) to give an equation in A and B. dM1: Uses the equation $H = A + B(x-9)^2$ or $H = A + B(9-x)^2$ to model the path and uses							
both 'end points' correctly placed to give 2 equations in 'A' and 'B'							
They may also use e.g. $(-2, 0.8)$ or $(18, 2)$ to give an equation in A and B.							
ddM1: Solves their 2 equations in "A" and "B" to find their 'A' and 'B'.							

This may be done on a calculator. You do **not** need to check their method for solving.

A1: Correct equation. Must be H = f(x).

Note that using $H = A + B(x-9)^2$ followed by the incorrect assumption that A = 2 is unlikely to score any marks as they will subsequently not be able to produce 2 equations in "A" and "B"

Possible alternative 3:

$$H = A((x-9)^2 - 81) + B$$
$$x = 0, H = 2 \Longrightarrow B = 2$$
$$x = 20, H = 0.8 \Longrightarrow 0.8 = 40A + B$$
$$B = 2 \Longrightarrow A = -0.03$$
$$H = 2 - 0.03((x-9)^2 - 81)$$

M1: Uses the equation $H = A((x-9)^2 - 81) + B$ to model the path and uses H = 2 when x = 0 correctly placed to find "B"

dM1: Uses the equation $H = A((x-9)^2 - 81) + B$ to model the path and uses H = 0.8 when

x = 20 correctly placed. May also use e.g. (-2, 0.8) or (18, 2)

ddM1: Substitutes their value for "*B*" to find a value for "*A*"

A1: Correct equation. Must be H = f(x).

(b)	Examples must focus on why the model may not be appropriate or		
	give situations where the model would break down e.g.:		
	• <i>H</i> is unlikely to be a quadratic function in <i>x</i>		
	• The path is unlikely to be parabolic		
	• Wind may affect the path of the ball		
	• Wind may affect the distance the ball travels		
	• Air resistance has not been considered		
	• The ball is unlikely to travel in a vertical plane (as it may		
	spin)		
	• The ball is not a particle so has dimensions/size		
	• The ground is unlikely to be horizontal		
	• There may be trees (or other hazards) that would affect the		
	path of the ball		
	• The shape of the ball may affect the motion		
	Condone statements (where the link to the model is not completely		
	made) such as	B1	3.5b
	• The ball will spin	DI	5.50
	• Ground is not flat		
	• The ball is not a particle		
	Do not accept statements that refer to the situation outside the range of the throw e.g.		
	• The model is not valid for all values of <i>x</i>		
	• <i>H</i> will become negative		
	Do not accept statements that do not refer to the given model or		
	single word vague answers e.g.		
	• The distances may have been measured incorrectly		
	• The ball is not modelled as a particle		
	• "Friction", "Spin", "Force", "air resistance"		
	• It does not take into account the weight of the ball		
	• It depends how good the thrower is		
	• You cannot throw the ball the same way every time	(1)	
()		(1)	
(c)	$x = 16 \Longrightarrow H = -0.03(16)^{2} + 0.54(16) + 2 = \dots$	M1	3.4
	H = 2.96 So Chandra would not be able to catch the ball	A1	3.2a
		(2)	
		(7	marks)
	Notes for (b) and (c)		
If	Gives a suitable limitation – see scheme If more than one limitation is given and one is acceptable then award this one of the other statements are contradictory (they may be incorrect/inap		-

- (c)
 M1: Substitutes x = 16 into their equation modelling the path to obtain a value for *H*. This may be seen explicitly as above or may be implied by their value (you may need to check). Must have a quadratic function in x.
- A1: Depends on
 - A correct equation
 - *H* = 2.96
 - Correct conclusion that she cannot catch the ball or equivalent

A minimum for M1A1 could be e.g. $x = 16 \Rightarrow H = 2.96$ "so no"

(c) Alternative:

e.g.
$$2.5 = 4.43 - 0.03(x - 9)^2 \implies x = 9 + \frac{\sqrt{579}}{3} = 17.02...$$

So Chandra would not be able to catch the ball

- M1: Substitutes H = 2.5 into their quadratic equation modelling the path to obtain a value for x. This may be seen explicitly as above or may be implied by their value (you may need to check). Must have a quadratic function in x.
- A1: Depends on
 - A correct equation
 - x = awrt 17
 - Correct conclusion that she cannot catch the ball or equivalent.

A minimum for M1A1 could be e.g. $H = 2.5 \Rightarrow x = 17$ "so no"