Questic	n Scheme	Marks	AOs	
10(a)	$x = 4, y = 2 \Longrightarrow t = -1$	B 1	2.2a	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \times \frac{\mathrm{d}t}{\mathrm{d}x} = -3t^2 \times \frac{1}{2(t+3)}$	M1	1.1b	
	$\frac{dy}{dx} = -3(-1)^2 \times \frac{1}{2(-1+3)} = -\frac{3}{4}$	M1	1.1b	
	$\Rightarrow y-2 = -\frac{3}{4}(x-4) \text{ or } \Rightarrow y = -\frac{3}{4}x+c \rightarrow 2 = -\frac{3}{4} \times 4 + c \Rightarrow c$	ddM1	2.1	
	$y-2 = -\frac{3}{4}(x-4) \Longrightarrow 4y-8 = -3x+12$			
	or $c = 5 \Longrightarrow y = -\frac{3}{4}x + 5$	A1*	1.1b	
	$\Rightarrow 3x + 4y = 20*$			
		(5)		
(b)	Maximum height is 9m	B1	3.4	
		(1)		
(6 marks)				
Notes				
the B mark is available but see alternative below.				
B1: Uses the given Cartesian coordinates to deduce the correct value for <i>t</i> .				
	If more than one value for t e.g. $t = -5$ is given and $t = -1$ is not "selected" score B0 but			
	If Just $t = -1$ is used subsequently allow recovery and score B1			
M1:	Attempts to use $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$ or equivalent with their differentiated equations. There must be an attempt to differentiate both parameters, however poor, and divide or			
	multiply correctly so using $\frac{dy}{dx} = \frac{y}{x}$ scores M0. Both parameters must be "changed".			
	Condone confusion with the variables e.g. referring to $\frac{dy}{dt}$ as $\frac{dy}{dx}$ if the intention is clear.			
	This may be implied by e.g. $\frac{dy}{dt} = -3t^2$, $\frac{dx}{dt} = 2(t+3), t = -1, \frac{dy}{dt} = -3, \frac{dx}{dt} = 4 \Rightarrow \frac{dy}{dx} = -\frac{3}{4}$			
M1:	Uses their numerical value of t (not 4) in their $\frac{dy}{dx}$ to obtain a value.			
	Condone attempts with different values of t e.g. $t = -1$ and $t = -5$			
ddM1: Applies a correct straight line method with their value of $\frac{dy}{dx}$ which has come from				
A1*:	an attempt to use parametric differentiation with their value of t (not 4) and with $x = 4$ and $y = 2$ correctly placed. An attempt at the equation of the normal is M0. If using $y = mx + c$ they must reach as far as $c =$ Depends on both previous M marks. A1*: Correct equation as printed with no errors but condone $4y + 3x = 20^*$ Allow equivalents e.g. $20 = 4y + 3x^*$ or $3x + 4y = 20^*$			
	This is a printed answer so there must be at least one intermediate step as nain scheme.	shown in	the	

Alternative for (a) using parametric differentiation but avoids the need for a value for t:

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = -3t^2 \times \frac{1}{2(t+3)}$$
$$-3t^2 \times \frac{1}{2(t+3)} = -3(1-y)^{\frac{2}{3}} \times \frac{1}{2\sqrt{x}} = -3(1-2)^{\frac{2}{3}} \times \frac{1}{2\sqrt{4}} = -\frac{3}{4}$$
or

$$-3t^{2} \times \frac{1}{2(t+3)} = -3(\sqrt{x}-3)^{2} \times \frac{1}{2\sqrt{x}} = -3(2-3)^{2} \times \frac{1}{2\sqrt{4}} = -\frac{3}{4}$$

$$-3t^{2} \times \frac{1}{2(t+3)} = -3(1-y)^{\frac{2}{3}} \times \frac{1}{2\left((1-y)^{\frac{1}{3}}+3\right)} = -3(1-2)^{2} \times \frac{1}{2\times 2} = -\frac{3}{4}$$
$$\Rightarrow y-2 = -\frac{3}{4}(x-4) \Rightarrow 3x+4y = 20*$$

- **B1:** Either a correct expression for $\frac{dy}{dx}$ in terms of x and/or y following a correct $\frac{dy}{dx}$ in terms of t or for t = -1 seen anywhere.
- M1: Attempts to use $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$ with their differentiated equations. There must be an attempt to differentiate both parameters, however poor, and divide or multiply correctly so using $\frac{dy}{dx} = \frac{y}{x}$ scores M0

Condone confusion with the variables e.g. referring to $\frac{dy}{dt}$ as $\frac{dy}{dx}$ if the intention is clear.

This may be implied by e.g. $\frac{dy}{dt} = -3t^2$, $\frac{dx}{dt} = 2(t+3)$, t = -1, $\frac{dy}{dt} = -3$, $\frac{dx}{dt} = 4 \Rightarrow \frac{dy}{dx} = -\frac{3}{4}$

M1: Attempts to express their $\frac{dy}{dx}$ which is in terms of *t*, in terms of *x* and/or *y* and uses x = 4 and y = 2 correctly placed in an attempt to find the gradient of the tangent.

ddM1: Applies a correct straight line method with their value of $\frac{dy}{dx}$ which has come from an attempt to use parametric differentiation with their gradient and with x = 4 and y = 2

correctly placed.

If using y = mx + c they must reach as far as c = ...

Depends on both previous M marks.

- A1*: Correct equation as printed with no errors. This is a printed answer so there must be at least one intermediate step as shown in the main scheme.
- (b)
- B1: 9m or equivalent including correct units. Accept e.g. 9 metres, 900cm etc.