Questi	on Scheme	Marks	AOs	
14(a)(i) Centre is (3, -7)	B1	1.1b	
(ii)	$(x-3)^{2} + (y+7)^{2} = 49 + 9 - 33 \Longrightarrow r^{2} =(25)$	M1	1.1b	
	r = 5	A1	1.1b	
		(3)		
(b)	Distance between centres = $\sqrt{(3+6)^2 + (-7+8)^2} = \sqrt{82}$	M1	3.1a	
		Alft dM1	1.1b	
	$\sqrt{82} - 5$ or $\sqrt{82} + 5$		2.2a	
	$\sqrt{82-5}$ and $\sqrt{82+5}$	AI	2.2a	
	$\left\{k : \sqrt{82} - 5 < k\right\} \cap \left\{k : k < \sqrt{82} + 5\right\}$			
	or e.g.	A1	2.5	
	$\left\{k: \sqrt{82} - 5 < k < \sqrt{82} + 5\right\}$			
		(5)		
(8 marks			marks)	
Notes				
B1: Correct centre. Allow as a coordinate pair or written separately e.g. $x = 3$, $y = -7$ or as a column vector $\begin{pmatrix} 3 \\ -7 \end{pmatrix}$ Condone missing brackets e.g. 3, -7 but do not allow coordinates the wrong way round.				
 (ii) M1: Uses a correct strategy to find the radius or radius² 				
Requires an attempt at: $(x \pm 3) + (y \pm 7) - 3^2 - 7^2 \pm 33 = 0 \Longrightarrow (x \pm 3) + (y \pm 7) = \alpha, \alpha > 0$				
	Award for $(x \pm 3)^2 + (y \pm 7)^2 - a^2 - b^2 \pm 33 = 0 \Rightarrow (x \pm 3)^2 + (y \pm 7)^2 = \alpha, \alpha > 0$ with at			
	least one of $a = 3$ or $b = 7$ (or 9 or 49)			
	You may see an attempt at " $f^2 + g^2 - c$ " or $\sqrt{(f^2 + g^2 - c)}$ " e.g. " $3^2 + 7^2 \pm 33$ " or $\sqrt{(3^2 + 7^2 \pm 33)}$			
A1:	Correct radius of 5. Do not allow ± 5 or $\sqrt{25}$.			
	May be scored following $(x \pm 3)^2 + (y \pm 7)^2 = 25$			
	Correct answers only in (a) scores B1M1A1			
(b) M1:	Uses Pythagoras correctly on their centre from part (a) and the given centre to find the distance between the centres.			
Look for $\sqrt{(-6-(\text{their } x))^2 + (-8-(\text{their } y))^2}$ or e.g. $\sqrt{((\text{their } x)-(-6))^2 + ((\text{their } y)-(-8))^2}$				
A1ft:	but condone one sign slip with their coordinates if the intention is clear. A1ft: Correct distance or follow through their centre from part (a). This may be implied by their value. Condone the use of decimals so allow 3sf accuracy			
	e.g. awrt 9.06 for $\sqrt{82}$ or you may need to check their value following an	incorrect	centre	
dM1:	 In (a)(1). Not e.g. ±√82 unless the positive root is subsequently used. Correct strategy for one of the limits. E.g. adds or subtracts <u>their 5</u> to their distance between centres. 			

A1: Correct limits. There is no follow through but allow decimals to 3sf e.g. awrt 4.06 and awrt 14.1 A1: Correct answer with exact values using set notation. Allow as shown in the main scheme but also allow equivalent set notation e.g. $\{k : k \in \mathbb{R}, \sqrt{82} - 5 < k < \sqrt{82} + 5\}, \{k : \sqrt{82} - 5 < k < \sqrt{82} + 5\}, k \in (\sqrt{82} - 5, \sqrt{82} + 5)$ and allow "|" for ":" and allow the "k:" or " $k \in$ " to be missing e.g. $\{\sqrt{82} - 5 < k < \sqrt{82} + 5\}$ and $(\sqrt{82} - 5, \sqrt{82} + 5)$ are both acceptable. But $\{k : k < \sqrt{82} + 5\} \cup \{k : k > \sqrt{82} - 5\}$ or $\{k : k < \sqrt{82} - 5, k < \sqrt{82} + 5\}$ score A0

Do **not** allow solutions not in set notation such as $\sqrt{82} - 5 < k < \sqrt{82} + 5$

Correct answers with no working should be sent to review.

Scenario for part (b) for reference:

Algebraic approach for part (b):

$$x^{2} + y^{2} - 6x + 14y + 33 = x^{2} + 12x + 36 + y^{2} + 16y + 64 - k^{2}$$

$$\Rightarrow 18x + 2y + 67 - k^{2} = 0 \Rightarrow y = \frac{k^{2} - 67}{2} - 9x$$

$$(x - 3)^{2} + (y + 7)^{2} = 25 \Rightarrow x^{2} - 6x + 9 + \left(\frac{k^{2} - 67}{2} - 9x + 7\right)^{2} = 25$$

$$\Rightarrow 82x^{2} + 471x - 9k^{2}x + \frac{k^{4} - 106k^{2} + 2745}{4} = 0$$

When circles touch $b^{2} - 4ac = 0$

$$\Rightarrow (471 - 9k^{2})^{2} - 4 \times 82\left(\frac{k^{4} - 106k^{2} + 2745}{4}\right) = 0$$

$$\Rightarrow k^{4} - 214k^{2} + 3249 = 0$$

$$\Rightarrow (k^{2} - 10k - 57)(k^{2} + 10k - 57) = 0$$

$$\Rightarrow k = 5 + \sqrt{82}, 5 - \sqrt{82}, -5 + \sqrt{82}, -5 - \sqrt{82}$$

$$k = 5 + \sqrt{82}, -5 + \sqrt{82}$$

We will mark this as follows:

- M1: This requires a valid strategy that:
 - solves the 2 circle equations simultaneously to find y in terms of x and k, or x in terms of y and k
 - substitutes for *y* or *x* into one of the circle equations to obtain an equation in *x* and *k* only, or *y* and *k* only,
 - attempts $b^2 4ac = 0$ or e.g. $b^2 4ac > 0$ or equivalent to obtain an equation in k only. You do not need to look at the details of their algebra.
- **A1:** Correct simplified 3TQ in k^2
- **dM1:** Solves their 3TQ in k^2 by any correct method including a calculator to find k.
- A1: Both correct values for *k* (exact or decimals as in the main scheme) (they may have extras which can be ignored)
- A1: As main scheme (exact and in set notation)

Note that work such as

$$(x+6)^{2} + (y+8)^{2} = k^{2} \Longrightarrow x+6+y+8=k$$

is not a valid strategy as it greatly simplifies the problem and would generally score no marks.

Implicit differentiation approach for part (b):

$$x^{2} + y^{2} - 6x + 14y + 33 = 0 \Longrightarrow 2x + 2y\frac{dy}{dx} - 6 + 14\frac{dy}{dx} = 0 \Longrightarrow \frac{dy}{dx} = \frac{6 - 2x}{2y + 14}$$

$$\frac{3-x}{y+7} = -\frac{x+6}{y+8} \Longrightarrow (3-x)(y+8) = -(x+6)(y+7) \Longrightarrow x = 9y+66$$

$$(9y+66)^2 + y^2 - 6(9y+66) + 14y + 33 = 0 \Longrightarrow 82y^2 + 1148y + 3993 = 0$$
(or $82x^2 - 492x - 1287 = 0$)
$$y = \frac{-574 \pm 5\sqrt{82}}{82} \Longrightarrow x = \frac{246 \pm 45\sqrt{82}}{82}$$

$$\left(\frac{246+45\sqrt{82}}{82}, \frac{-574+5\sqrt{82}}{82}\right) \rightarrow \left(\frac{246+45\sqrt{82}}{82}+6\right)^2 + \left(\frac{-574+5\sqrt{82}}{82}+8\right)^2 = k^2$$
$$\Rightarrow k^2 = 107+10\sqrt{82} \Rightarrow k = 5+\sqrt{82}$$
Then the same for $\left(\frac{246-45\sqrt{82}}{82}, \frac{-574-5\sqrt{82}}{82}\right) \rightarrow k = -5+\sqrt{82}$

We will mark this as follows:

- M1: This requires a valid strategy that:
 - differentiates the equations of both circles implicitly and equates the derivatives to obtain an equation connecting *y* and *x*. (Note that the equation connecting *y* and *x* is the common equation through the centres which can also be found from using the coordinates of the centres)
 - substitutes for x or y into the equation for C_1 to obtain an equation in one variable
- A1: Correct 3TQ in y or x
- **dM1:** This requires:
 - solves their 3TQ in y or x by any correct means including a calculator and finds at least one point of intersection
 - substitutes this point into C_2 and proceeds to a value for k
- A1: Correct values for *k* (exact or decimals as in the main scheme)
- A1: As main scheme (exact and in set notation)