Quest	tion	Scheme	Marks	AOs	
4(a	1)	e.g. $6.4^2 = 8^2 + 13^2 - 2(8)(13)\cos ABC$	M1	1.1b	
		(angle $ABC =$) $\cos^{-1} \left(\frac{8^2 + 13^2 - 6.4^2}{2 \times 8 \times 13} \right) = 0.394 \text{ (radians)}^*$	A1*	1.1b	
			(2)		
(b)		e.g. $(Area(ABC) =) \frac{1}{2}(8)^2(0.394)$ (= awrt 12.6)			
		or	M1	1.1b	
		(Area (ABD) =) $\frac{1}{2}$ (8)(13)sin 0.394 (=awrt 20.0)			
		$\left(\operatorname{Area}(R)\right) = \frac{1}{2}(8)(13)\sin 0.394 - \frac{1}{2}(8)^2(0.394) = \dots$	dM1	3.1a	
		(Area $(R) =$) awrt 7.34 to 7.37	A1	1.1b	
			(3)		
(5 marks)					
Notes					
It is acceptable in this question to work in degrees and convert if necessary. NB Angle ABC in degrees is 22.591°					
(a)		ND Angle ADC in degrees is 22.591			
M1:	Atten	empts to use the cosine rule with values correctly placed. May be implied by, e.g.,			
	$\cos \theta$	$s\theta = \frac{8^2 + 13^2 - 6.4^2}{2 \times 8 \times 13} \text{ or } \cos^{-1}\left(\frac{6.4^2 - 8^2 - 13^2}{-2 \times 8 \times 13}\right)$			
		ndone slips in substitution if a correct cosine formula is seen. The placement of the values			
should be correct. So, condone e.g. a missing 2 once a correct cosine for Alt 1: attempts the cosine rule and finds angle ADB (= awrt 0.5 or 29°)					
	AILI	(= awrt 2.2 or 2.3 or 129°) and uses the sine rule correctly with angle ABC involved.			
	Alt 2:	t 2: attempts the cosine rule and finds angle ADB (= awrt 0.5 or 29°) and angle BAD			
	1110 2	(= awrt 2.2 or 2.3 or 129°) and sums angles ADB, BAD, and ABC to π (or 180°)			
	Alt 3	3: using Pythagoras and simultaneous equations to find the length of AN or BN (see			
		diagram on the next page) and uses e.g. $\cos ABC = \frac{BN}{8}$ or $\sin ABC = \frac{AN}{8}$			
A1*:		Correct proof. And the proof of the proof			
	such a	tarting with $6.4^2 = 8^2 + 13^2 - 2(8)(13)\cos ABC$ then there must be an intermediate line			
		$\cos ABC = \frac{8^2 + 13^2 - 6.4^2}{2 \times 8 \times 13} \text{ or angle } ABC = \cos^{-1} \left(\frac{8^2 + 13^2 - 6.4^2}{2 \times 8 \times 13} \right)$			
	• C0	$\cos ABC = \text{awrt } 0.92 \text{ or } \frac{4801}{5200}$			
		angle ABC = awrt 0.3943			
	The minimum required is e.g. $\cos^{-1} \left(\frac{8^2 + 13^2 - 6.4^2}{2 \times 8 \times 13} \right)$ or $\cos \theta = \frac{8^2 + 13^2 - 6.4^2}{2 \times 8 \times 13}$).394	
		oth of which score M1A1*.			
	The final value must be 0.394 and not e.g. 0.3943. There should be no obvious incorrect statements in the proof e.g. $\cos(0.92) = 0.394$ and no obvious incorrect work.				
	Allow the use of, e.g., θ , x , or even e.g. A throughout. Mention of radians is not required.				
	Those working in degrees and achieve 22.6 can convert to 0.394 without calculation for M1A1				

Attempts via verification e.g. $AD^2 = 8^2 + 13^2 - 2(8)(13)\cos 0.394 \rightarrow AD = \text{awrt 6.4 score}$ maximum M1A0*.

(b) Note: you may need to check the diagram for working.

M1: Attempts the area of the sector **or** the area of the triangle *ABD* via a **correct** method. May be implied by a full attempt at the area of *R*.

The sector area may be implied by $\frac{1576}{125}$ or by $\frac{0.394}{2\pi} \times \pi \times 8^2$ or $\frac{22.6}{360} \times \pi \times 8^2$

The angle *ABC* is given in the question as 0.394 and should be used (or a more accurate value). Do not allow use of a different value for angle *ABC* (other than the angle in degrees).

There are many acceptable alternative approaches to find the area of triangle *ABD*, e.g. using their angle *ADB* or their angle *BAD* or using right-angled triangles

e.g.
$$\frac{1}{2}(13)("3.07")$$
 or $\frac{1}{2}("7.39")("3.07") + \frac{1}{2}("5.614")("3.07")$ and could be implied by e.g. $11.3 + 8.6$

Alternatively, attempts the area of the triangle $ACD\left(\text{e.g.}\frac{1}{2}(5)(6.4)\sin"0.501" = \text{awrt } 7.68\right)$

or the area of the segment (in sector *ABC*) $\left(\frac{1}{2}(8^2)(0.394) - \frac{1}{2}(8^2)\sin 0.394 = \text{awrt } 0.324\right)$

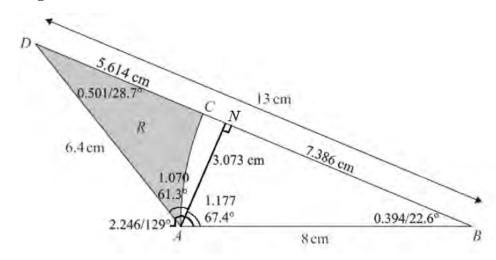
via a **correct** method. The area of the triangle *ABC* alone is insufficient for this mark.

Note that
$$\sin 0.394$$
 might be seen as $\sqrt{1 - \left(\frac{4801}{5200}\right)^2}$

For values, see the diagram below.

dM1: Complete and correct method for the area of *R*. Requires correct attempts at both the area of the sector **and** the area of the triangle *ABD* **and** subtraction of the two values (or expressions). Allow sector – triangle *ABD* if this is then recovered by making the area positive.

Alternatively, correct attempts at both the area of the triangle ACD and the area of the segment (in sector ABC) and subtraction of the two values (or expressions).


Condone slips in substitution provided a correct formula is seen.

May be implied by a correct answer.

A1: awrt 7.34 to 7.37 no units required but penalise incorrect units.

ISW after an acceptable answer is seen.

Helpful Diagram:

