Questio	Scheme	Marks	AOs			
5(a)	$-3 = \frac{t-1}{2} \Rightarrow t = -5 \Rightarrow y = 5("-5"+2)^4$	M1	1.1b			
	(y=)405	A1	1.1b			
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(2)				
(b)	$x = \frac{t-1}{2} \Rightarrow t = 2x+1 \Rightarrow y = 5("2x+1"+2)^4$ $y = 5(2x+3)^4$	M1	1.1b			
	$y = 5\left(2x+3\right)^4$	A1	1.1b			
		(2)				
(c)	$("2x+3")^n \to ("2x+3")^{n-1}$	M1	1.1b			
		dM1	1.1b			
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = -1080$	A1	1.1b			
		(3)				
		(7	marks)			
(-)	Notes Mark results (a) and (b) to eather					
(a) Mark parts (a) and (b) together. M1: Substitutes $x = -3$ into $x = \frac{t-1}{2}$, attempts to find t , and substitutes their t into $y = 5(t+2)^4$						
C	Condone slips. May be implied by substitution of $t = -5$ into y or by 405 or by $y = 5(-3)^4$					
Alternatively, they may substitute $x = -3$ into their $y = f(x)$						
A1: cao Answer only scores full marks and ISW after seeing 405 e.g. (-5, 405)						
Accept $(-3, 405)$ or e.g. $P = 405$ (b) Mark parts (a) and (b) together.						
M1: A	t-1					
su	substitutes into $y = 5(t+2)^4$ Condone slips e.g. dividing by 2 first: $t = \frac{x}{2} + 1$ or missing the					
+2	$+2 \text{ in } y = 5(t+2)^4$					
A	Alt 1: Writes $t = \left(\frac{y}{5}\right)^{\frac{1}{4}} - 2$, substitutes into $x = \frac{t-1}{2}$ and attempts to make y the subject using					
th	the correct order of operations, i.e., $2x = \left(\frac{y}{5}\right)^{\frac{1}{4}} - 3 \Rightarrow \left(2x + 3\right)^{4} = \frac{y}{5} \Rightarrow y = 5\left(2x + 3\right)^{4}$					
A	Alt 2: Makes t the subject and then substitutes into an expanded $5(t+2)^4$					
D	Do not be too concerned about their expansion, but it must contain t^4 and a constant term.					
	cao and ISW after a correct answer seen. May be scored for $y = 5(2x+1+2)^4$					
	Allow e.g. $y = 80x^4 + 480x^3 + 1080x^2 + 1080x + 405$ or e.g.					
	$y = 5(2x+1)^4 + 40(2x+1)^3 + 120(2x+1)^2 + 160(2x+1) + 80$ Their PHS may be unsimplified but do not allow if a g. binomial coefficients are still present					
	Their RHS may be unsimplified but do not allow if e.g. binomial coefficients are still present. Do not accept $f(x) =$ It must be $y =$					

` /		. ,	
M1:	Reduces the power of their $("2x+3")^n$ by	one to $Q("2x+3")^{n-1}$ where Q is a constant and	
	could be 1. There should be no other terms	s using this method.	

Alternatively, attempts to expand their $("2x+3")^n$ (may have been expanded in (b)) and reduces the power of x by one in at least one term.

Note: Differentiation seen in (a) or (b) can score marks if used in (c)

They may use parametric differentiation, i.e., $\frac{dy}{dt} = a(t+2)^3$ and $\frac{dx}{dt} = b$ where a and b are

constants, leading to $\frac{dy}{dx} = \frac{a(t+2)^3}{b}$ i.e. they must divide the correct way round. Condone attempts at the chain rule that reach e.g. $y' = ...u^3$ but make a slip when substituting

back in for x or t, e.g., $\frac{dy}{dx} = (5x+3)^3$ or $\frac{dy}{dt} = (t+2)^2$, provided the intention is clear. Substitutes x = -3 into their $\frac{dy}{dx}$ in terms of x which may be implied by their answer.

Using parametric differentiation, substitutes their t (found from an attempt at substituting

x = -3 into $x = \frac{t-1}{2}$ which may have been seen in (a)) into their $\frac{dy}{dx}$ in terms of t. Note for reference, if correct, the parametric differentiation is $\frac{dy}{dt} = 20(t+2)^3$ and $\frac{dx}{dt} = \frac{1}{2}$

leading to $\frac{dy}{dx} = 40(t+2)^3$

They may substitute their value of t into $\frac{dy}{dt}$ first before using the chain rule to reach $\frac{dy}{dx}$

which is acceptable and implies the first M mark.

(c)

A1: $\left(\frac{dy}{dx}\right) = -1080$

Correct answer only scores full marks. May be seen labelled as m or something else.