Question	Scheme	Marks	AOs		
10(a)	$\frac{\mathrm{d}V}{\mathrm{d}t} = 0.45 \text{ or } \frac{\mathrm{d}V}{\mathrm{d}t} = \pm 0.3V$	M1	3.1b		
	$\frac{\mathrm{d}V}{\mathrm{d}t} = 0.45 - \frac{3}{10}V$ $20\frac{\mathrm{d}V}{\mathrm{d}t} = 9 - 6V *$	A1*	2.1		
		(2)			
(b)	e.g. $\frac{1}{9-6V} \frac{dV}{dt} = \frac{1}{20} \rightarrow \int \frac{1}{9-6V} dV = \int \frac{1}{20} dt$	B1	1.1b		
	$\frac{1}{9-6V} \to \dots \ln 9-6V $ $-\frac{1}{6}\ln 9-6V = \frac{t}{20} (+c)$	M1	1.1b		
	$-\frac{1}{6}\ln\left 9-6V\right = \frac{t}{20} (+c)$	A1	1.1b		
	$-\frac{1}{6}\ln 9-6V = \frac{t}{20} + c$ $9-6V = Ae^{-\frac{3t}{10}}$ $t = 0, V = 0.25 \Rightarrow A = (7.5)$ $-\frac{1}{6}\ln 9-6V = \frac{t}{20} + c$ $t = 0, V = 0.25 \Rightarrow c = \left(-\frac{1}{6}\ln 7.5\right)$	dM1	3.1a		
	$9-6V = 7.5e^{-\frac{3t}{10}}$ $V = \frac{3}{2} - \frac{5}{4}e^{-\frac{3t}{10}}$ $\frac{1}{6}\ln 7.5 - \frac{1}{6}\ln 9-6V = \frac{t}{20}$ $\ln \frac{7.5}{9-6V} = 0.3t$ $9-6V = 7.5e^{-0.3t}$ $V = \frac{3}{2} - \frac{5}{4}e^{-0.3t}$	A1	2.1		
	, = :	(5)			
	Notes				
	11: Either $\frac{dV}{dt} = 0.45$ or $\frac{dV}{dt} = \pm 0.3V$ o.e. e.g. $\frac{dV}{dt} = \frac{9}{20}$ or $\frac{dV}{dt} = \pm \frac{3}{10}V$ seen or implied by				
e.g	g. $\frac{dV}{dt} = 0.45 - \frac{3}{10}V$ (but not implied by just stating the given answer). Condone use of \dot{V}				
	It may be seen as part of their $\frac{dV}{dt}$ e.g. $\frac{dV}{dt} = 0.45 + V + 0.3V$ scores M1A0*				
	Condone e.g. change in volume = (inflow – outflow =) $0.45 - 0.3V$ for this mark.				
A1*: Ac	chieves $20 \frac{dV}{dt} = 9 - 6V$ with no errors, following $\frac{dV}{dt} = 0.45 - \frac{3}{10}V$ o.e. (including the $\frac{dV}{dt}$				
or	\dot{V} but note that it must be $\frac{dV}{dt}$ in the final line and not \dot{V}).				
cha	nge in volume = $0.45 - 0.3V \rightarrow 20 \frac{dV}{dt} = 9 - 6V$ scores M1A0*.				
	ore any units used in their working for both marks.				
(b)					
B1: Sep	parates the variables correctly, e.g., $\int \frac{1}{9-6V} dV = \int \frac{1}{20} dt$ or $\int \frac{20}{9-6V} dV = \int \{1\} dt$ o.e.				
The	The integral symbol and/or dV and/or dt may be implied if they go on to integrate both sides to the correct formln $ \alpha(9-6V) =t$ (+c) with or without the modulus brackets.				

some constant
$$\beta$$
 (and α if used). Condone e.g. $\frac{20}{9-6V} \rightarrow ... \ln 9 - 6V$ or $\rightarrow ... \ln 6V - 9$

A1: Correct integration for both sides. They do not need the $+c$ for this mark. Note scoring this mark implies the earlier B1 (unless it is a verification attempt – see SC). Note that e.g. $-\frac{1}{6} \ln |3-2V| = \frac{t}{20} (+c)$ or $-\frac{10}{3} \ln |2V-3| = t (+c)$ are also correct.

 $-\frac{1}{6} \ln (9-6V) = \frac{t}{20} (+c)$ is also correct.

Condone log being used in place of $\ln t$.

Attempts to integrate the reciprocal term $\frac{\beta}{9-6V} \rightarrow ... \ln |9-6V|$ or $\rightarrow ... \ln |\alpha(6V-9)|$ for

dM1: Requires constant of integration now. Substitutes (or states) t = 0 and V = 0.25 and finds a value for c, which may be "A" = e^c if they rearrange first to eliminate ln terms. Dependent on the previous method mark. Do not be concerned about their processing to find c or "A" = e^c and does not need to be exact.

Achieves the required form e.g. $V = \frac{3}{2} - \frac{5}{4}e^{-\frac{3t}{10}}$ with no errors and clear working. A1: Allow equivalent fractions or decimals e.g. $V = 1.5 - 1.25e^{-\frac{6}{20}t}$

SC: Attempts by verification may score maximum B0M1A1dM1A0 – see below. Use of an integrating factor – see below. Alt: Special Case: Attempts by verification may score maximum B0M1A1dM1A0 (b) This mark may not be scored via this approach. B0: Differentiates $V = P - Qe^{-kt}$ to the form $\frac{dV}{dt} = \alpha e^{-kt}$ where α is a constant (note it should be M1:

 $\frac{dV}{dt} = Qke^{-kt}$) and substitutes both this and $V = P - Qe^{-kt}$ into $20\frac{dV}{dt} = 9 - 6V$ and deduces a value for P or k by comparing coefficients. A1: Correct values for both *P* and *k*. Substitutes (or states) t = 0 and V = 0.25 and finds a value for Q. dM1:

Requires a value for P to have been found using the above approach. A0: This mark may not be scored via this approach.

Alternative: Using Integrating Factor (Further Maths) B1:

Deduces the correct integrating factor for the equation,
$$e^{0.3t}$$

This should come from $\frac{dV}{dt} + 0.3V = 0.45 \Rightarrow I.F. = e^{\int 0.3dt} = e^{0.3t}$

May be implied by sight of $\frac{d(Ve^{0.3t})}{dt} = ...$

M1:

A1:

May be implied by sight of
$$\frac{d(Ve^{oss})}{dt} = ...$$

M1: Fully multiplies through by their integrating factor and integrates both sides.

Score for
$$Ve^{kt} = \int ...e^{kt} dt = ...e^{kt}$$
 Condone missing dt

Correct integration $Ve^{0.3t} = \int 0.45e^{0.3t} dt = \frac{3}{2}e^{0.3t} (+c)$ A1:

dM1: As main scheme. As main scheme.

Questio	n Scheme	Marks	AOs	
10(c)	Examples: (1) $\frac{dV}{dt} = 0 \Rightarrow V = (1.5)$ (or e.g. max V is 1.5) (2) As $t \to \infty$, $e^{-"0.3"t} \to 0$ (or $V \to "1.5"$) (3) Flow in = flow out at max V so $0.3V = 0.45 \Rightarrow V = 1.5$ (4) As $e^{-"0.3"t} > 0$, $V < "1.5"$ (5) When $V > 1.5$, $\frac{dV}{dt} < 0$ (6) $V = 2 \Rightarrow \frac{dV}{dt} = -0.15$ or compares $\frac{dV_{out}}{dt}$ (= 0.6) against $\frac{dV_{in}}{dt}$ (= 0.45) at $V = 2$ (7) $V = 2 \Rightarrow "1.5" - "1.25" e^{-"0.3"t} = 2 \Rightarrow e^{-"0.3"t} < 0$ (8) "1.5" - "1.25" $e^{-"0.3"t} = 2 \Rightarrow \ln(-0.4)$ is undefined (condone e.g. gives a maths error)	M1	3.2a	
	 The (upper) limit for V is 1.5 (m³) so no (the container will not become full) (first 4 bullets) If V = 2 (or V > 1.5), it would be emptying so no (it can never be full) (bullets 5, 6) No, as the equation cannot be solved (or is not true/doesn't work) when V = 2 (bullets 7, 8) 	A1ft	2.4	
		(2)		
	(9 marks)			
Notes (c) M1: See main scheme. If using the answer to part (b) it must be of the form $V = P - Qe^{-kt}$ but there is no limitation on the values of their P , Q or k . Substitution of a large value for t may score this mark but it is unlikely to be recovered to score the A1 unless they reference e.g. V_{max} being "1.5". Reference to an (upper) limit of "1.5" or their P can imply the method mark. If setting $V = 2$ in their equation they must reach either $\ln(-\text{ve})$ or solve the equation to reach a value for t to score this mark.				
M "n To an vi Ju Tl	Must conclude "no" or equivalent e.g. "the container will not become full". Makes a correct interpretation for their method (see bullets 1-8) with a clear conclusion e.g. "no". To score this mark through ft, their V must be of the form $V = P - Qe^{-kt}$ with $k > 0$, $Q > 0$ and $0 < P < 2$ if used (but note that they can still use the answer to part (a) to score both marks via bullets 1, 3, 5 or 6). Allow "it" in place of the "container"/"tank". Just stating "the equation cannot be solved when $V = 2$ " without any evidence is MOA0. There must be no incorrect working if solving their equation or contradictory statements such as " t cannot be negative" but condone notational errors provided the intention is clear.			