	() / -		
/44 >		(1)	
(ii)	30 solutions or e.g. each interval of length π has 6 solutions	B1	2.2a
	e.g., Each interval of length π has 6 solutions, and there are 5	dB1	2.4
	intervals of length π , so $5 \times 6 = 30$ solutions.	(2)	
		(2)	
	NT. 4	(3	marks)
(:)	Notes		
(i) B1: cao	(n =) 3		
(ii)			
B1: Eith			
	Deduces 30 solutions		
	or deduces the correct total number of solutions for $\sin(nx) = k$ and $\sin(\cos \sin^2(nx) = k^2)$ in any relevant interval $(0 \text{ to } \pi, 2\pi, 4\pi \text{ or } 5\pi)$		
	or deduces the correct number of solutions in 0 to 5π for either $\sin(nx) = \sin(nx) = -k$	= <i>k</i>	
	or deduces the correct total number of solutions for $\sin(x) = k$ and $\sin(x)$ in any relevant interval $(0 \text{ to } \pi, 2\pi, 4\pi \text{ or } 5\pi)$	()=-k	
	uires 30 (solutions) and correct justification comprising all the elements et points below. See the tables on the next page for the correct values.	in one of t	he
	Deduces the correct total number of solutions for $\sin(nx) = k$ and $\sin(nx)$ (or $\sin^2(nx) = k^2$) in any relevant interval (0 to π , 2π or 4π) and scales to 0 to 5π		to
•	or deduces the correct number of solutions in 0 to 5π for $\sin(nx) = k$		
	and for $sin(nx) = -k$ and then adds		
	or finds the total correct number of solutions for $\sin(x) = k$ and $\sin(x) = i$ n any relevant interval (0 to π , 2π , 4π or 5π) and then scales the interval multiplies by 3		π and
	stating e.g. $2 \times 6 \times 2.5$ is insufficient for the dB1 mark without further jure are many acceptable variations, and some examples are below and on		
•	ne examples: 6 solutions in each interval of length π (B1) and 5 intervals of length π 12 solutions in each interval of length 2π (B1) and 2.5 intervals of length 2 solutions for $\sin x = k$ up to 2π , so for $\sin^2 x$ there are 4 per 2π (B1)		
	and since $0 \le x < 5\pi$ then $0 \le 3x < 15\pi$ so $\frac{15}{2} \times 4 = 30$ (dB1)		
•	Double the 6 solutions since $\sin(nx) = \pm k$ (or $\sin^2(nx) = k^2$) so 12 (B1) are hence 30 in 5π (dB1)	nd so 24 in	4π ,
	16 solutions for $\sin(nx) = k$ (B1) and 14 (solutions) for $\sin(nx) = -k \rightarrow 3$	0 (dB1)	
•	$\sin^2(3x) = \frac{1-\cos(6x)}{2}$ and as $\cos x = k$ has 5 solutions in 0 to 5π (B1) a	nd so cos6	x has
	$5\times6=30(\mathrm{dB1})$		
	phical approaches may be used but these must be convincing, clearly sho	_	

(n =) 3

B1

2.2a

13(i)

Note that a suitable graph of $\sin x$ showing, e.g. 10 solutions up to 5π , followed by 30 (calculation of $\times 3$ clearly implied) would also be eligible to score the dB1.

- The following are examples of an incorrect justification but scores B1dB0 for reaching 30:
 sin(nx) = k has 3×6 solutions in the interval 0 to 5π, sin(nx) = -k has 3×4 solutions (in the interval 0 to 5π) so 18 + 12 = 30 solutions in total.
 sin(nx) = k has 15 solutions in the interval 0 to 5π, so for sin²(nx) has 15×2 = 30 solutions
- For reference, the tables below show the total number of solutions for each branch of $\sin^2(nx) = k^2$ with n = 3 and the bold values score the first B1 **provided they are in the correct interval**.

		_	•	
	$0 \le x < \pi$	$0 \le x < 2\pi$	$0 \le x < 4\pi$	$0 \le x < 5\pi$
$\sin(nx) = k$	4	6	12	16
$\sin(nx) = -k$	2	6	12	14
Total solutions	6	12	24	30

and n = 1 for those that deal with nx(3x) last.

in total.

	$0 \le x < \pi$	$0 \leq x < 2\pi$	$0 \le x < 4\pi$	$0 \le x < 5\pi$
$\sin(x) = k$	2	2	4	6
$\sin(x) = -k$	0	2	4	4
Total solutions	2	4	8	10