| Questio                                                        | Scheme                                                                                                                                                                                                                                   | Marks | AOs  |  |  |  |  |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|--|--|--|--|
| 14(a)                                                          | $\left(\overrightarrow{AD} = \overrightarrow{AB} - \overrightarrow{DB} = \right) 2\mathbf{a} + 3\mathbf{b} - \left(-4\mathbf{a} + k\mathbf{b}\right) \left(= 6\mathbf{a} + \left(3 - k\right)\mathbf{b}\right)$                          | M1    | 1.1b |  |  |  |  |
|                                                                | $\frac{15}{6} = 2.5 \Rightarrow \frac{-5}{3-k} = 2.5 \rightarrow k = \dots$                                                                                                                                                              | dM1   | 1.1b |  |  |  |  |
|                                                                | <i>k</i> = 5 *                                                                                                                                                                                                                           | A1*   | 2.1  |  |  |  |  |
|                                                                |                                                                                                                                                                                                                                          | (3)   |      |  |  |  |  |
| Notes                                                          |                                                                                                                                                                                                                                          |       |      |  |  |  |  |
| (a)                                                            | a) Note: Condone the use of column vectors throughout this question.                                                                                                                                                                     |       |      |  |  |  |  |
| There may be working on the diagram that can be awarded marks. |                                                                                                                                                                                                                                          |       |      |  |  |  |  |
| M1: A                                                          | A1: Attempts either $(\overrightarrow{AD} = \overrightarrow{AB} - \overrightarrow{DB} =) 2\mathbf{a} + 3\mathbf{b} - (-4\mathbf{a} + k\mathbf{b})$ or $(\overrightarrow{DA} =) -4\mathbf{a} + k\mathbf{b} - (2\mathbf{a} + 3\mathbf{b})$ |       |      |  |  |  |  |

sets up equivalent ratios e.g. 
$$6:15=3-k:-5$$
 and solves for  $k$ 

Note that their coefficient might be the reciprocal, from e.g.  $\beta(2\mathbf{a} + 3\mathbf{b} + 4\mathbf{a} - k\mathbf{b}) = 15\mathbf{a} - 5\mathbf{b}$  $(\beta = 2.5)$  and directions might be reversed in which case  $\alpha = -0.4$  or  $\beta = -2.5$  can be used. Arrives at k = 5 via a correct method. Usually this will be following:

A correct expression for  $\overrightarrow{AD}$  (e.g.  $2\mathbf{a} + 3\mathbf{b} - (-4\mathbf{a} + k\mathbf{b})$ ) or  $\overrightarrow{DA}$  or  $\overrightarrow{BD}$  or  $\overrightarrow{DB}$  which may be

mislabelled. Correct scale factor stated ( $\pm 2.5$  or  $\pm 0.4$ ) or implied (e.g., by  $\frac{-5}{3-k} = \frac{15}{6}$  or 3(3-k) = -6)

An example minimal response might look like: e.g.  $\alpha (15\mathbf{a} - 5\mathbf{b}) = 6\mathbf{a} + (3 - k)\mathbf{b} \to 6 = 15\alpha \to \alpha = \frac{2}{5} \to -5(\frac{2}{5}) = 3 - k \to k = 5$ 

or e.g.  $6\mathbf{a} + (3-k)\mathbf{b} \to \frac{15}{6} = -\frac{5}{3-k} \to k = 5$ Condone missing/invisible brackets if recovered.

A correct intermediate equation that leads to k = 5

M1:

dM1:

A1\*:

e.g.  $2\mathbf{a} + 3\mathbf{b} = \overrightarrow{AD} - 4\mathbf{a} + k\mathbf{b}$ For reference:  $\overrightarrow{AD} = 6\mathbf{a} + (3-k)\mathbf{b}$  and  $\overrightarrow{DA} = -6\mathbf{a} + (k-3)\mathbf{b}$ 

(either way round).

 $3-k=-5\alpha$  hence k=...

or  $(\overrightarrow{DB} = \overrightarrow{DA} + \overrightarrow{AB} =) \alpha (15\mathbf{a} - 5\mathbf{b}) + 2\mathbf{a} + 3\mathbf{b}$ 

Allow subtraction either way round and may be implied by one correct component or by

same vector, of which one expression must use  $\overrightarrow{DB}$ .

Allow e.g.  $(\overrightarrow{AD} =)$   $\begin{pmatrix} 6\mathbf{a} \\ (3-k)\mathbf{b} \end{pmatrix}$  or  $(\overrightarrow{AD} =)$   $\begin{pmatrix} 6 \\ 3-k \end{pmatrix}$  including without the brackets  $\begin{pmatrix} 6 \\ 3-k \end{pmatrix}$ 

Condone the use of gradients or ratios for  $\overrightarrow{AD}$  e.g.  $\frac{6}{3-k}$  or "6:3-k" to imply this mark There are alternatives using e.g.  $\overrightarrow{DC}$  but, in these cases, we require two expressions for the

A full method to solve the problem. Some possible approaches: attempts to find a scale factor and uses it to find k

sets up equivalent fractions e.g.  $\frac{15}{6} = -\frac{5}{3-k}$  or e.g.  $\frac{2--4}{3-k} = \frac{15}{-5}$  and solves for k

sets up simultaneous equations and solves for k e.g.  $2\mathbf{a} + 3\mathbf{b} + 4\mathbf{a} - k\mathbf{b} = \alpha(15\mathbf{a} - 5\mathbf{b})$  o.e. or

 $(\overrightarrow{DB} = \overrightarrow{DA} + \overrightarrow{AB} =) \alpha (-15\mathbf{a} + 5\mathbf{b}) + 2\mathbf{a} + 3\mathbf{b} = -4\mathbf{a} + k\mathbf{b}$  leading to  $6 = 15\alpha (\alpha = \frac{2}{5})$  and

| 11100111 | autive by vermention.                                                                                                                                                                                  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M1:      | Sets $k = 5$ , substitutes into $\overrightarrow{DB}$ and attempts $(\overrightarrow{AD} = \overrightarrow{AB} - \overrightarrow{DB} =) 2\mathbf{a} + 3\mathbf{b} - (-4\mathbf{a} + 5\mathbf{b})$ o.e. |
| dM1:     | Attempts to compare $\overrightarrow{AD}$ o.e. with $\overrightarrow{BC}$ (usually $6\mathbf{a} - 2\mathbf{b} = \alpha(15\mathbf{a} - 5\mathbf{b})$ ) and finds $\alpha$                               |

Alternative by verification:

Requires:

Conclusion referencing the lines being parallel e.g. "hence AD and BC are parallel."

| Quest                                                                                                                                                                                                                                                                                                                                                                                                           | ion Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marks       | AOs     |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|--|--|--|--|
| 14(1                                                                                                                                                                                                                                                                                                                                                                                                            | e.g., $(\overrightarrow{BN} =) \frac{1}{5} \overrightarrow{BC} (= 3\mathbf{a} - \mathbf{b})$                                                                                                                                                                                                                                                                                                                                                                                                               | B1          | 2.2a    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                 | e.g., $(\overrightarrow{BX} = \lambda \overrightarrow{BD} =) \lambda (4\mathbf{a} - 5\mathbf{b})$                                                                                                                                                                                                                                                                                                                                                                                                          | M1          | 2.1     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                 | e.g., $(\overrightarrow{BX} = \lambda \overrightarrow{BD} =) \lambda (4\mathbf{a} - 5\mathbf{b})$                                                                                                                                                                                                                                                                                                                                                                                                          |             |         |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                 | and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dM1         | 3.1a    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                 | e.g. $(\overrightarrow{BX} = \overrightarrow{BA} + \mu \overrightarrow{AN} =) (-2\mathbf{a} - 3\mathbf{b}) + \mu (2\mathbf{a} + 3\mathbf{b} + "3\mathbf{a} - \mathbf{b}")$                                                                                                                                                                                                                                                                                                                                 |             |         |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                 | $4\lambda = -2 + 5\mu$ $-5\lambda = -3 + 2\mu$ $\Rightarrow \lambda = \dots \left(\frac{1}{3}\right) \text{ or } \mu = \dots \left(\frac{2}{3}\right)$                                                                                                                                                                                                                                                                                                                                                     | ddM1        | 1.1b    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                 | 1:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A1          | 2.2a    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (5)         |         |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                 | (8 marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |         |  |  |  |  |
| (b)                                                                                                                                                                                                                                                                                                                                                                                                             | Notes  Notes  Notes Condone the use of column vectors throughout this question                                                                                                                                                                                                                                                                                                                                                                                                                             | n           |         |  |  |  |  |
| <b>(b)</b>                                                                                                                                                                                                                                                                                                                                                                                                      | Note: Condone the use of column vectors throughout this question.  There may be working on the diagram that can be awarded mark                                                                                                                                                                                                                                                                                                                                                                            |             |         |  |  |  |  |
| B1:                                                                                                                                                                                                                                                                                                                                                                                                             | Deduces a correct interpretation of the ratio $BN : NC = 1:4$ that enables a sta                                                                                                                                                                                                                                                                                                                                                                                                                           |             | tion.   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                 | i.e., progresses to a correct statement that is at least as far as $(\overrightarrow{BN} =) \frac{1}{5} \overrightarrow{BC}$ (or e.g. $3\mathbf{a} - \mathbf{b}$ )                                                                                                                                                                                                                                                                                                                                         |             |         |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                 | or $(\overrightarrow{CN} =) \frac{4}{5}\overrightarrow{CB}$ (or e.g. $4\mathbf{b} - 12\mathbf{a}$ ). May be embedded in e.g. $(\overrightarrow{AN} =) 2\mathbf{a} + 3\mathbf{b} + \frac{1}{5}\overrightarrow{BC}$                                                                                                                                                                                                                                                                                          |             |         |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                 | Allow e.g. $\frac{1}{5} \binom{15}{-5}$ or $\binom{3}{-1}$ or $\binom{3a}{-b}$ for this mark.                                                                                                                                                                                                                                                                                                                                                                                                              |             |         |  |  |  |  |
| M1:                                                                                                                                                                                                                                                                                                                                                                                                             | the key step in attempting a valid expression for $\overrightarrow{BX}$ (or $\overrightarrow{AX}$ or $\overrightarrow{DX}$ or $\overrightarrow{CX}$ or $\overrightarrow{NX}$ ) in as of <b>a</b> and <b>b</b> . See diagram/notes on the next page for helpful vectors. Indoor slips provided their intention is clear. See that they might be using $\lambda$ and $\mu$ the other way round or alternative variables.                                                                                     |             |         |  |  |  |  |
| Note:                                                                                                                                                                                                                                                                                                                                                                                                           | May be seen as a single expression such as $\overrightarrow{AB} = \overrightarrow{AX} + \overrightarrow{XB}$ (i.e. $\overrightarrow{AB} = p\overrightarrow{AN} + \overrightarrow{AB}$                                                                                                                                                                                                                                                                                                                      |             |         |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                 | or $\overrightarrow{BN} = \overrightarrow{BX} + \overrightarrow{XN}$ (i.e. $\overrightarrow{BN} = p\overrightarrow{BD} + q\overrightarrow{AN}$ ) either of which scores M1dM1 s                                                                                                                                                                                                                                                                                                                            | imultaneoı  | ısly.   |  |  |  |  |
| dM1:                                                                                                                                                                                                                                                                                                                                                                                                            | the key step in attempting a <b>second</b> valid expression for their $\overrightarrow{BX}$ (or $\overrightarrow{AX}$ or $\overrightarrow{DX}$ or or $\overrightarrow{NX}$ ) in terms of <b>a</b> and <b>b</b> which enables the problem to be solved, i.e., it must not be allel in approach to the first. See diagram/notes on the next page for helpful vectors. Expression should involve " $\lambda$ " (4 <b>a</b> – 5 <b>b</b> ) and the other should involve " $\mu$ " ("5 <b>a</b> + 2 <b>b</b> ") |             |         |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                 | Condone slips provided their intention is clear.  They must use different parameters in their approaches, e.g., $\lambda$ and $\mu$ .                                                                                                                                                                                                                                                                                                                                                                      |             |         |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                 | If using e.g. $\overrightarrow{DX} = -6\mathbf{a} + 2\mathbf{b} + \mu(5\mathbf{a} + 2\mathbf{b})$ and $\overrightarrow{XB} = \lambda(-4\mathbf{a} + 5\mathbf{b})$ this mark is                                                                                                                                                                                                                                                                                                                             | not scored  | l until |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                 | they set $\overrightarrow{DX} + \overrightarrow{XB} = \overrightarrow{DB}$ as $-6\mathbf{a} + 2\mathbf{b} + \mu(5\mathbf{a} + 2\mathbf{b}) + \lambda(-4\mathbf{a} + 5\mathbf{b}) = -4\mathbf{a} + 5\mathbf{b}$                                                                                                                                                                                                                                                                                             |             |         |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                 | Dependent on the previous method mark.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |         |  |  |  |  |
| ddM1: Compares coefficients of <b>a</b> and <b>b</b> to create simultaneous equations in their parameters and attempts to solve (which may be by calculator) leading to a value for one of their parameters. Condone slips provided the intention is clear. This mark may be implied by a <b>correct</b> value for e.g. $\lambda$ following their two <b>correct</b> expressions for e.g. $\overrightarrow{BX}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |         |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                 | Dependent on both previous method marks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |         |  |  |  |  |
| A1:                                                                                                                                                                                                                                                                                                                                                                                                             | 1:2 o.e. Must follow a correct value for their parameter.  The correct ratio seen does <b>not</b> imply full marks. Candidates must show deta                                                                                                                                                                                                                                                                                                                                                              | ilad rassan | ing     |  |  |  |  |

The correct ratio seen does **not** imply full marks. Candidates must show detailed reasoning.

There may be attempts using similar triangles. Send to review. Helpful Diagram:

Allow equivalent ratios e.g.  $\frac{1}{2}$ :  $\frac{2}{3}$  and ISW (e.g. 1:3) but they must be the correct way round.



Note: Some examples of valid expressions for the M and dM marks for part (b) are: In each expression they may use different parameters and e.g.  $1-\lambda$  might just be e.g.  $\phi$ .

• 
$$\overrightarrow{BX} = \lambda \overrightarrow{BD} = \lambda (4\mathbf{a} - 5\mathbf{b})$$
  
•  $\overrightarrow{BX} = \overrightarrow{BA} + \mu \overrightarrow{AN} = (-2\mathbf{a} - 3\mathbf{b}) + \mu (2\mathbf{a} + 3\mathbf{b} + "3\mathbf{a} - \mathbf{b}")$ 

$$\overrightarrow{BX} = \overrightarrow{BN} + (1-\mu)\overrightarrow{NA} = ("3\mathbf{a} - \mathbf{b}") + (1-\mu)(-2\mathbf{a} - 3\mathbf{b} + "-3\mathbf{a} + \mathbf{b}")$$

$$\overrightarrow{DX} = (1 - \lambda)\overrightarrow{DB} = (1 - \lambda)(-4\mathbf{a} + 5\mathbf{b})$$

$$\overrightarrow{DX} = \overrightarrow{DA} + \mu \overrightarrow{AN} = ("-6\mathbf{a} + 2\mathbf{b}") + \mu(2\mathbf{a} + 3\mathbf{b} + "3\mathbf{a} - \mathbf{b}")$$

• 
$$DX = DA + \mu AN = ("-6\mathbf{a} + 2\mathbf{b}") + \mu(2\mathbf{a} + 2\mathbf{b}") + \mu(2\mathbf{a} + 2\mathbf{b}")$$

$$\overrightarrow{DX} = \overrightarrow{DN} + (1 - \mu)\overrightarrow{NA} = ("-\mathbf{a} + 4\mathbf{b}") + (1 - \mu)(-2\mathbf{a} - 3\mathbf{b} + "-3\mathbf{a} + \mathbf{b}")$$

$$\overrightarrow{AX} = \mu \overrightarrow{AN} = \mu (2\mathbf{a} + 3\mathbf{b} + "3\mathbf{a} - \mathbf{b}")$$

$$\overrightarrow{AX} = \overrightarrow{AB} + \lambda \overrightarrow{BD} = (2\mathbf{a} + 3\mathbf{b}) + \lambda (4\mathbf{a} - 5\mathbf{b})$$

$$\overrightarrow{AX} = \overrightarrow{AD} + (1-\lambda)\overrightarrow{DB} = ("6\mathbf{a} - 2\mathbf{b}") + (1-\lambda)(-4\mathbf{a} + 5\mathbf{b})$$

$$\overrightarrow{XN} = \mu \overrightarrow{AN} = \mu (2\mathbf{a} + 3\mathbf{b} + "3\mathbf{a} - \mathbf{b}")$$

$$\overrightarrow{XN} = \lambda \overrightarrow{DR} + \overrightarrow{RN} = \lambda (-4a + 5b) + ("3a - b")$$

$$\overrightarrow{XN} = \lambda \overrightarrow{DB} + \overrightarrow{BN} = \lambda \left( -4\mathbf{a} + 5\mathbf{b} \right) + \left( "3\mathbf{a} - \mathbf{b} " \right)$$

 $\overrightarrow{XN} = (1 - \lambda)\overrightarrow{BD} + \overrightarrow{DN} = (1 - \lambda)(4\mathbf{a} - 5\mathbf{b}) + ("-\mathbf{a} + 4\mathbf{b}")$ or alternatives using C or N as starting points, but these are unlikely.