1. *Kaff* coffee is sold in packets. A seller measures the masses of the contents of a random sample of 90 packets of *Kaff* coffee from her stock. The results are shown in the table below.

Mass w (g)	Midpoint y (g)	Frequency f
$240 \le w < 245$	242.5	8
$245 \le w < 248$	246.5	15
$248 \le w < 252$	250.0	35
$252 \le w < 255$	253.5	23
$255 \le w < 260$	257.5	9

(You may use $\sum fy^2 = 5\ 644\ 171.75$)

A histogram is drawn and the class $245 \le w < 248$ is represented by a rectangle of width 1.2 cm and height 10 cm.

(a) Calculate the width and the height of the rectangle representing the class $255 \le w \le 260$.

(b) Use linear interpolation to estimate the median mass of the contents of a packet of *Kaff* coffee to 1 decimal place.

(c) Estimate the mean and the standard deviation of the mass of the contents of a packet of *Kaff* coffee to 1 decimal place.

The seller claims that the mean mass of the contents of the packets is more than the stated mass. Given that the stated mass of the contents of a packet of *Kaff* coffee is 250 g and the actual standard deviation of the contents of a packet of *Kaff* coffee is 4 g,

(d) test, using a 5% level of significance, whether or not the seller's claim is justified. State your hypotheses clearly.

(You may assume that the mass of the contents of a packet is normally distributed.)

(5)

(e) Using your answers to parts (b) and (c), comment on the assumption that the mass of the contents of a packet is normally distributed.

(1)

(Total 14 marks)