Question	Scheme		Marks	AOs
2(a)	IQR = 26.6 - 19.4 [= 7.2]		B1	2.1
	$19.4 - 1.5 \times `7.2' = 8.6$] or 2	26.6 + 1.5 × '7.2' [= 37.4]	M1	1.1b
	Plotting one upper whisker to 32.5 and one lower whisker to 8.6 or 9.1		A1	1.1b
	Plotting 7.6 and 8.1 as the only two outliers		A1	1.1b
			(4)	
(b)	October (since it is the month with the coldest temperatures between May and October in Beijing)		B1	2.4
			(1)	
(c)	(c) $[\sigma =]\sqrt{\frac{4952.906}{184}}$ or e.g. $[\sigma =]\sqrt{\frac{S_{xx}}{n}} = 5.188$ $[=5.19*]$		B1cso*	1.1b
			(1)	
(d)	$z = (\pm) 1.28(16)$ [.	$P_{90} =]29.251$ or $[P_{10} =]15.948$	B1	3.1b
	2 × 1.2816 × 5.19	·29.251' – ·15.948'	M1	1.1b
		$= awrt \underline{13.3}$	A1	1.1b
			(3)	
(e)	Daily mean <u>wind speed/Beaufor</u> <u>Rain</u> fall since it is not symmetr	mean <u>wind speed</u> / <u>Beaufort</u> conversion since it is <u>qualitative</u> all since it is not symmetric/lots of days with 0 rainfall		2.4 2.4
			(2)	
(11 marks)				
		Notes		
(a)	 b1: for a correct calculation for the IQR (implied by 10.8 or 8.6 or 57.4 seen) M1: for a complete method for either lower outlier limit or upper outlier limit (allow ft on their IQR) (may be implied by the 1st A1 or a lower whisker at 8.6) A1: both whiskers plotted correctly (allow ½ square tolerance) A1: only two outliers plotted, 7.6 and 8.1 (must be disconnected from whisker) NOTE: A fully correct box plot with no incorrect working scores 4/4 			
(c)	BICSO*: Correct expression with square root or correct formula and 5.188 or better Allow a complete correct method finding $\sum x^2 = \text{awrt } 98720$ and $\sigma = \sqrt{\frac{98715.9}{184} - \left(\frac{4153.6}{184}\right)^2}$			
(d)	B1: Identifying <i>z</i> -value for 10th or 90th percentile (allow awrt (±) 1.28) or for identifying $[P_{90} =]29.251$ (awrt 29.3) or $[P_{10} =]15.948$ (awrt 15.9) (This may be implied by a correct answer awrt 13.3) M1: for $2 \times z \times 5.19$ where $1 < z < 2$ or for their $P_{90} - P_{10}$ where $25 < P_{90} < 35$ and $10 < P_{10} < 20$ A1: awrt 13.3			
(e)	 B1: for one variable identified and a correct supporting reason B1: for two variables identified and a correct supporting reason for each Allow any two of the following: Wind speed/Beaufort since the data is non-numeric (o.e.). They need not mention Beaufort provided there is a description of the data as non-numeric (Do not allow wind direction/wind gust) Rainfall as not symmetric/is skewed/is not bell shaped/lots of 0s /many days with no rain/mean≠mode or median Date since each data value appears once/it is uniformly distributed Daily mean pressure since it is not symmetric/is skewed/not bell shaped Daily mean wind speed since it is not symmetric/is skewed/not bell shaped 			