Question	Scheme		Marks	AOs
3(a)	$H_0: \rho = 0$ $H_1: \rho > 0$		B1	2.5
	Critical value 0.3438		M1	1.1a
	(0.446 > 0.3438) so there is evidence that the product moment correlation coefficient (pmcc) is greater than 0/there is positive correlation		A1	2.2b
			(3)	
(b)	The value is close(r) to 1 or there is strong(er) (positive) correlation		B1	2.4
			(1)	
(c)	$\log_{10} y = -1.82 + 0.89(\log_{10} x)$	$y = ax^{n} \rightarrow \log_{10} y = \log_{10} (ax^{n})$	M1	1.1b
	$y = 10^{-1.82 + 0.89(\log_{10} x)}$	$\log_{10} y = \log_{10} a + \log_{10} x^n$	M1	2.1
	$y = 10^{-1.82} \times 10^{0.89(\log_{10} x)}$ $[= 10^{-1.82} \times 10^{(\log_{10} x)^{0.89}}]$	$\log_{10} y = \log_{10} a + n \log_{10} x$ $[\log_{10} a = -1.82, n = 0.89]$	M1	1.1b
	$y = 0.015x^{0.89}$	$y = 0.015x^{0.89}$	A1A1	1.1b 1.1b
			(5)	
				9 marks)
Notes				
	B1: for both hypotheses correct in terms of ρ M1: for the critical value: sight of 0.3438 or any cv such that $0.25 < cv < 0.45$			
	basis of seeing +0.3438			
(a)	and which mentions "pmcc/correlation/relationship" and "greater than 0/positive" (no			
	$\rho > 0$) or an answer in context e.g. 'as "income"(o.e.) increases, "CO ₂ /emissions"(o.e.) increases' A contradictory statement scores A0 e.g. 'Accept H ₀ , therefore positive correlation'			
(b)	B1: for suitable reason e.g. r is close(r) to 1 or "strong(er)"/"near perfect" "correlation" Do not allow 'association'			
` ,	For both methods, once an M0 is scored, no further marks can be awarded			
	and condone missing base 10 throughout Method 1: (working to the model) M1: Correct substitution for both c and m (may be implied by 2^{nd} M1 mark) M1: Making y the subject to give an equation in the form $y = 10^{a+b(\log_{10} x)}$ (may be implied by 3^{rd} M1 mark) M1: Correct multiplication to give an equation in the form $y = 10^a \times 10^{b(\log_{10} x)}$ (this line implies M1M1M1 provided no previous incorrect working seen)			
(c)	Method 2: (working from the model) M1: Taking the log of both sides (may be implied by 2 nd M1 mark) M1: Correct use of addition rule (may be implied by 3 rd M1 mark) M1: Correct multiplication of power (this line implies M1M1M1 provided no previous incorrect working seen)			
	A1: $n = 0.89$ or $a = \text{awrt } 0.015$ or $y = ax^{0.89}$ or $y = \text{awrt } 0.015x^n$ (dep on M3)			
	A1: $n = 0.89$ and $a = \text{awrt } 0.015$ / $y = \text{awrt } 0.015x^{0.89}$ (dep on M3)			
	do not award the final A1 if answer is given in an incorrect form e.g. $y = 0.015 + x^{0.89}$			