Qu 3	Scheme	Marks	AO
(a)	$[68 - 7 =] \underline{61} (only)$	B1	1.1b
		(1) D1	1 11
(D)	[25 - 14] = 11	BI (1)	1.10
(c)	607.5	(1)	
	$\mu \text{ or } \bar{x} = \frac{27.5}{27} = \frac{22.5}{27}$	B1	1.1b
		(1)	
(d)			4 41
	$\sigma = \sqrt{\frac{27}{27} - 22.5} \frac{\text{or}}{\sqrt{146.4629}}$	MI	1.10
	= 12.10218 awrt <u>12.1</u>	A1	1.1b
		(2)	
(e)	$\mu + 3\sigma = "22.5" + 3 \times "12.1" = awrt 59 so only one outlier$	B1ft	1.1b
(f)	Madian increases implies that both values must be > 20	(1) M1	2 1h
(1)	Mean is the same means that $a \pm b = 45$	M1	5.10 1.1h
	So possible values are: e σ $h = 21$ and $a = 24$ (o.e.)	A1	2.2h
		(3)	2.20
(g)	Both values will be less than 1 standard deviation from the mean and so the	D1	2.4
	standard deviation of all 29 values will be smaller	DI	2.4
		(1)	
		(10 ma)	rlza)
	Notes	(IV ma	(K 5)
(a)	B1 for correctly interpreting the box plot to find the range (more than 1 answer is B0)		
(b)	B1 for correct understanding of IQR and answer of 11		
(c)	B1 for 22.5 only (or exact equivalent such as $\frac{45}{2}$) Allow 22 mins and 30 second		
(C)	D 1 for 22.5 only (of exact equivalent such as $\frac{1}{2}$). Anow 22 mins and 50 sees	•	
(d)	M1 for a correct expression including square root Allow $\sqrt{146}$ or better. Et the	neir mean	
()	Λ_1 for swrt 12.1 NB Allow use of $s = 12.3327$ or sw	1011 mean 123	
	1101 awit 12.1 ind 1101 awit 12.5527 of av	vit 12.5	
(e)	B1ft for a correct calculation or value based on their μ and σ and compatible conclusion		
(f)	1 st M1 Correct start to the problem and a correct statement about the values based on median		
	Allow if their final two values are both >20		
	2^{m} M1 for a correct explanation leading to equation $a + b = 45$ (o.e. e.g. equidistant from mean) Allow if their final two values sum to 45		
	A1 for a correct pair of values (both > 20 with a sum of 45) and at least some attempt to		
	explain how their values satisfy at least one of the conditions (both > 20 or $a + b = 45$).		
	Ignore $a = \text{or } b = \text{labels}$		
NB	The values for a and b do not need to be integers.		
(\cdot)	D1 for a correct exploration		
(g)	D1 IOF a COFFECT EXPLANATION. Must mention that both values are less than 1 sd (ft their answer to (d)) from	m the me	an
	$\frac{1}{1000}$		all