Qu 6	Scheme	Marks	AO
(a)	[Sum of probs = 1 implies] $\log_{36} a + \log_{36} b + \log_{36} c = 1$	M1	3.1a
	$\Rightarrow \log_{36}(abc) = 1$ so $abc = 36$	A1	3.4
	All probabilities greater than 0 implies each of a , b and $c > 1$	B1	2.2a
	$36 = 2^2 \times 3^2$ (or 3 numbers that multiply to give 36 e.g. 2, 2, 9 etc.)	dM1	2.1
	Since a, b and c are distinct must be $2, 3, 6$ $(a = 2, b = 3, c = 6)$	A1	3.2a
		(5)	
(D)	$(\log_{36} a)^2 + (\log_{36} b)^2 + (\log_{36} c)^2$	M1	3.4
	[=0.0374137+0.09398737+0.25]		
	= 0.38140 awrt <u>0.381</u>	Al (2)	1.1b
		(2)	
		(7 mark	s)
	Notes		
(a)	1^{st} M1 for a start to the problem using sum of probabilities leading to eq'n in a, b and c		
	1^{st} A1 for reducing to the equation $abc = 36$ [Must follow from their equation	on.]	
NB	Can go straight from $abc = 36$ to the answer for full marks for part (a).		
	B1 for deducing that each value > 1 (may be implied by 3 integers all > 1 in the next line)		
	2 nd dM1 (dep on M1A1) for writing 36 as a product of prime factors <u>or</u>		
	3 values with product = 36 and none = 1		
SC	2^{Int} A1 for 2, 3 and 6 as a list or $a = 2$, $b = 3$ and $c = 6$		
SC Ans only	This gets the SC score of 2/5 [Ouestion says show your working ch	early]	2/3)
0 y	This gets the Se secre of 2.5 [Question sugs show your working en		
(b)	M1 for a correct expression in terms of a , b and c or values; ft their intege	rs <i>a</i> , <i>b</i> and	С
	Condone invisible brackets if the answer implies they are used.		
	A1 for awrt 0.381		