1. Sam is playing a computer game.

When Sam earns a reward in the game, she randomly receives either a Silver reward or a Gold reward.

Each time that Sam earns a reward, the probability of receiving a Gold reward is 0.4

One day Sam plays the computer game and earns 11 rewards.

(a) Find the probability that she receives (b)(ii) $G \sim N(120, (F_2)^2)$

(ii) at least 5 Gold rewards.

(i) exactly 2 Gold rewards,

P(Binomial G > 135) = P(Normal G > 134.5) (Imark)

because \ for P (Normal G 7/39,6) (2)

fx-991Ex: MENU7-Dist/Normal CD) = 000374 OR fx-CGSO: DIST/NORM/NCJ) = 0.0437 In the next month Sam earns 300 rewards. She decides to use a Normal distribution to estimate the probability that she will receive

(2)

(2)

at least 135 Gold rewards.

(b) (i) Find the mean and variance of this Normal distribution.

(ii) Estimate the probability that Sam will receive at least 135 Gold rewards.

Let G be the no. of Gold rewards

G~B(11,0.4)

(a)(i) $P(G=2) = {}^{11}C_2 \cdot 0.4^2 \cdot (1-0.4)^{11-2}$ = ${}^{11}C_2 \cdot 0.6^9 = 0.08868... = 0.0887.35f}$

OR fx-991EX: MENU 7-Distribution/BinomialPD/Variable

OR tx-CG50: DIST/BINOMIAL/Bpd/Variable

P(G =4) = \{fx-991Ex: MENU 7-Dist./Binomial CD/Variable}=0.53277...
(fx-GG50: DIST/BINOMIAL/Bcd/Variable) 1-0.53277... = 0.4672... = 0.467 3sf

(b) The next month, G~B(300, 0.4)
(300 is a large no. and 0.4 is close to 0.5,50) G≈N(np, npg)

here $np = \mu = 300 \times 0.4 = 120$ (Imark) $npq = np(1-p) = \sigma^2 = 300 \times 0.4 \times 0.6 = 72$ (Imark)