Question		Scheme		Marks	AOs
6(a)		 eg As the number of minutes <u>exercise</u> (m) increases the resting <u>heart rate</u> (h) decreases or the gradient of the curve is becoming flatter with increasing m: diminishing effect of each <u>additional minute</u> of <u>exercise</u> 		B1	2.4
				(1)	
(b)		$H_0: \rho = 0 H_1: \rho < 0$		B1	2.5
		Critical value -0.3887 (Allow \pm)		M1	1.1b
	There is evidence that the product moment <u>correlation</u> is <u>less than 0</u> / <u>there is a negative correlation</u>		Al	2.2b	
			1	(3)	
(c)		$\log_{10} h = -0.05 \log_{10} m + 1.92$	$h = am^k \rightarrow \log_{10} h = \log_{10} am^k$	M1	1.1b
		$\log_{10} h = -\log_{10} m^{0.05} + 1.92 \text{ or}$ $\log_{10} h = \log_{10} m^{-0.05} + 1.92 \text{ or}$ $h = 10^{1.92 - 0.05 \log_{10} m} \text{ oe}$	$\log_{10} h = \log_{10} a + \log_{10} m^k$ or $\log_{10} a = 1.92$	M1	2.1
		$\log_{10} hm^{0.05} = 1.92 \text{ or}$ $\log_{10} \left(\frac{h}{m^{-0.05}} \right) = 1.92 \text{ or}$ $h = 10^{1.92} \times 10^{-0.05 \log_{10} m} \text{ oe}$	$\log_{10} h = \log_{10} a + k \log_{10} m$	M1	1.1b
		$hm^{0.05} = 10^{1.92}$ or $\frac{h}{m^{-0.05}} = 10^{1.92}$ or $h = 10^{1.92} \times 10^{\log_{10} m^{-0.05}}$	$\log_{10} a = 1.92$ and $k = -0.05$	M1	1.1b
		$h = 10^{1.92} m^{-0.05}$ or $h = 83.17m^{-0.05}$ or $a = awrt 83.17$ and $k = -0.05$		A1	1.1b
		Notes:		(5)	marks)
		eg Idea as one increases the other decreases (in context). Allow use of <i>m</i> and <i>h</i> eg As <i>m</i> increases <i>h</i>			
(a)	B1	decreases. Do not allow negative correlation with no context or $\rho < 0$ Allow there is a negative correlation/association/relationship/exponential between minutes <u>exercise(m)</u> and resting heart rate (h) oe			
(b)	B1	Both hypotheses correct in terms of ρ (allow p)			
	M1	For the cv of -0.3887 or any cv such that $0.3 < cv < 0.5$			
	A1	Independent of hypotheses. Correct conclusion that implies reject H ₀ on basis of seeing – 0.3887 or if they give 0.3887 we must see the comparison 0.3887 < 0.897 and which mentions "pmcc/correlation/relationship" and less than 0/ negative or $\rho < 0$ A contradictory statement scores A0 eg Accept H ₀ therefore negative correlation			
(c)		In this part once M0 is scored no more marks can be scored. Condone no base			
		May be implied by 2nd M1 mark Method 1: Correct substitution for both x and y Method 2 : Taking the log of both sides			
	M1	May be implied by 3rd M1 markMethod 1: Correct use of the power log rule or making h the subjectMethod 2 : Correct use of the addition/subtraction log rule			
	M1	This line implies M1M1M1Method 1: Correct use of the addition/subtraction log rule or eqn in the form $h = 10^{1.92} \times 10^{-0.05 \log m}$ Method 2: A second correct step for correct use of the power log rule			
This line implies M1M1M1M1					
$A = a w rt 83.2 m^{-0.05}$			$\frac{10^{192} \times 10^{\log m}}{10^{102}}$ Method 2: Log <i>a</i> (or <i>a</i>)	and k corre	ect
		NB award 5/5 for $a = awrt 83.2$ and $k = -0.05$ or $h = awrt 83.2m^{-0.05}$ or $h = 10^{1.92} m^{-0.05}$			