Qu 2	Scheme	Marks	AO
(a)	Comment in context about either independence or random packing e.g. " <u>prizes</u> must be placed in <u>packets</u> at <u>random/independently</u> of each other" <u>or</u> about constant probability e.g.	B1	3.5b
(b)(i)	"the <u>probability</u> of a <u>packet</u> containing a <u>prize</u> is <u>constant/ the same/fixed</u> " $[P(T=6) =] 0.17273 \text{ awrt } \underline{0.173}$	(1) B1	1.1b
(ii)	$[P(T < 3) = P(T_{n}, 2) =] 0.061587 awrt 0.0616$	B1 (2)	1.1b
(c)	[K= no. of boxes with fewer than 3 packets containing a prize] $K \sim B(5, "0.0616")$	M1	1.1b
(L)	P(K = 2) = 0.031344 in the range [0.0313~0.0314]	A1 (2)	1.10
(a)	$H_0: p = \frac{1}{7}$ $H_1: p < \frac{1}{7}$	BI	2.5
	[X = no of packets containing a prize] X~B(110, $\frac{1}{7}$)	MI	3.3
	[P(X, 9)] = 0.038292	A1	3.4
	[Significant result <u>or</u> reject H_0]	A1	2.2b
	E.g. there is evidence to support Kamil's claim		
		(4)	
		(9 mark	(s)
	Notes		
	 <u>Should mention key words/ideas of: prizes in packets or packets in boxes</u> <u>May use idea of constant probability</u>. Must see key words underlined in scheme. Idea of probability with "independence" or "not affected by other packets" is B0 B0 for: Idea of only 2 cases. E.g. <u>Packet contains a prize or not</u> <u>or</u> Idea of a fixed number of trials. E.g. Need a <u>fixed number of packets in each box</u> 		
(b)(i) (ii)	B1 for awrt 0.173 B1 for awrt 0.0616		
(c)	M1 for sight of B(5, "0.0616") or ${}^{5}C_{2}("0.0616")^{2}(1-"0.0616")^{3}$ ft their answer to (b)(ii).		
	A1 for an answer in the range $[0.0313 \text{ to } 0.0314]$ Use of 0.0616 gives 0.0313	356ans o	nly 2/2
(d)	B1 for both hypotheses correct in terms of <i>p</i> or π M1 for selecting an appropriate model, may be implied by 1 st A1 or P(X = 9) = 0.0199(2) 1 st A1 for 0.038 or better <u>or</u> allow 0.04 with sight of P(X ,, 9)		
ALT	Critical Region. Allow CR of X , 9 (or $X < 10$) provided a supporting probability is seen		
	e.g. A1 for correct CR plus P(X,, 10) = 0.0718 (accept 2sf or 1sf if prob statement seen) 2^{nd} A1 (dep on 1 st A1 but indep of hyp's) for a suitable conclusion in context that suggests <u>support</u> for (Kamil's) <u>claim</u> or states that there is evidence that <u>proportion</u> <u>/probability/chance</u> of packets containing a <u>prize</u> is less than $\frac{1}{7}$		
	Do not award 2 nd A1 for contradictory statements e.g. "not significant" so "su	upports cl	aim"
Normal	Sight of N $\left(\frac{110}{7}, \frac{660}{49} \text{ or awrt } 13.5\right)$ or probability of 0.045(20) or 0.033((66) scor	es M1