Qu 5	Scheme	Marks	AO
(a)	$P(S \cap \{X = 50\}) = P(S \cap \{X = 80\}) [= a \text{ constant}, V] \implies b \times \frac{k}{50} = c \times \frac{k}{80}$ May see: $\frac{k}{50} = \frac{V}{b}$ and $\frac{k}{80} = \frac{V}{c}$ (condone any <u>letter</u> for V even S)	M1	3.1a
	So $c = \frac{8}{5}b$ *	A1cso*	1.1b
(b)	$d = 2b$ or $a = \frac{2}{5}b$ or $c = 4a$ or $d = 5a$ or $d = \frac{5}{4}c$	(2) M1 A1	2.1 3.3
	$\frac{2}{5}b + b + \frac{8}{5}b + 2b = 1$	M1	2.1
	$\Rightarrow 5b = 1$ so $b = \frac{1}{5}$ (o.e.)	A1	1.1b
	$a = \frac{2}{25} b = \frac{1}{5} c = \frac{8}{25} d = \frac{2}{5}$	A1	3.2a
(c)	[Experiment suggests for Nav] P($S \mid \{X = 100\}$) = 0.3 $\Rightarrow k = 30$	(5)	
	or $0.3 = \frac{1}{0.4} \implies V = 0.12$ So model won't work since	B1	2.4
	$P(S X = 20) = \frac{30}{20} \text{ or } \frac{0.12}{0.08} \text{ and so would be greater than 1}$	(1)	
		(1) (8 marks	 3)
	Notes		,
(a)	M1 for use of $P(S X = x) \times P(X = x)$ for $x = 50$ and $x = 80$ (Must see	k or their V	V)
24	Any expression or equation MUST be based on the probability st	atements i	n qu.
NB	Alcso for rearranging to required result, no incorrect work seen, condon	e poor not	ation
	Use of values e.g. $b = \frac{20}{20+50+80+100}$ to prove (a) is M0A0 but scores 2 nd M1A1 in (b)		
(b)	Marks for (b) may be awarded for work seen in (a) 1 st M1 for at least one other relationship (either probability the subject) from the list. 1 st A1 for a second different relationship (either probability the subject) from the list. <u>or</u> Allow for: $\frac{ak}{20} = \frac{bk}{50} = \frac{ck}{80} = \frac{dk}{100}$ for 1 st M1 1 st A1 2 nd M1 for using or stating sum of prob's = 1 May be implied by one correct probability. 2 nd A1 for one correct probability e.g. $b = \frac{1}{5}$ or exact equivalent such as 0.2 3 rd A1 for all correct probabilities. Allow exact equivalents e.g. $c = 0.32$ Sight of correct distribution or list of probs with no obvious incorrect working is 5/5		
(c)	B1 for deducing $k = 30$ and giving a suitable example to show model by	oreaks dow	vn

Notes on Question 5

The question essentially uses the definition of P(A | B) given in the formula booklet.

In particular
$$P(S | \{X = x\}) = \frac{P(S \cap \{X = x\})}{P(X = x)}$$
 [1]

The first "blob" tells us that $P(S | \{X = x\}) = \frac{k}{x}$ where k is a constant.

The second "blob" tells us that $P(S \cap \{X = x\})$ is the same for all x so $P(S \cap \{X = x\}) = V$ where V is a constant.

Using these results in 1 gives $\frac{k}{x} = \frac{V}{P(X = x)}$ 2

Line 1 of MS for part (a) uses $V = P(X = x) \times \frac{k}{x}$ for x = 50 and x = 80

Line 2 of MS for part (a) uses 2 with x = 50 and x = 80

Other implications

Equation 1 can be rearranged to give $P(X = x) = x \times \frac{V}{k}$ 3

So when a + b + c + d = 1 is used this gives $1 = \frac{V}{k} (20 + 50 + 80 + 100)$ or $\frac{V}{k} = \frac{1}{250}$ [4]

In particular if we use this relationship in 3 the probabilities *a*, *b*, *c* and *d* can simply be written down for example $b = \frac{50}{250}$ as given in the **NB** in the notes on the MS.

The point is that k and V will vary according to equation 4 but as part (c) shows there are some restrictions on the values k, and therefore V, can take.

Since
$$\frac{k}{x}$$
 is a probability then, ignoring the trivial cases*, $0 < \frac{k}{x} < 1$ and the "restricting" value of x is clearly $x = 20$ so $0 < k < 20$ and from 4 we get $0 < V < \frac{20}{250} = \frac{2}{25} = a$

So the restrictions on k and on V are given by the shortest distance and its associated probability.

* k = 0 would say Tisam can never get the ball in the cup no matter what the distance.

k = 20 says she always gets the ball in the cup for any distance.