Qu 1	Scheme	Marks	AO
(a)	$X \sim B(10, \frac{1}{6})$ [Allow 0.167 or better for $\frac{1}{6}$]	M1	3.3
(i)	[P(X=3)=] 0.155045 awrt <u>0.155</u>	A1	1.1b
(ii)	$[P(X < 3) = P(X \le 2) =] 0.775226$ awrt <u>0.775</u>	A1 (3)	1.1b
(b)	[Let $D = \text{no. of days when } X = 3$] $D \sim B(60, "0.155")$	M1	3.3
	$P(D \ge 12) = 1 - P(D \le 11)$ [Allow $1 - P(D < 12)$]	M1	3.4
	= 1 - 0.78819 awrt <u>0.212</u>	A1 (3)	1.1b
(c)	$[n = 600, p = \frac{1}{6}]$ estimate = 100	B1	3.4
	<u>—</u>	(1)	
(d)	[S = total no. of sixes over 60 days.] $S \approx T \sim N\left("100", \sqrt{\frac{5}{6} \times 100}^2\right)$	M1A1	3.3,1.1b
	$P(S > 95) \approx P([T >]95.5) \text{ or } P([Z >] \frac{95.5 - "100"}{"9.128"}) \text{ or } P([Z >] - 0.49)$	M1	3.4
	= 0.688976 awrt <u>0.689</u>	A1	1.1b
		(4) (11 m	arks)
	Notes		,
(-)	If you see any attempt using an <i>n</i> -sided die with <i>n</i> not equal to 6 please send to review.		
(a)	M1 for sight or use of the correct distribution. Must have B, or Bin or Bpd or Bcd and the correct value for n and p , just $n = 10$, $p = \frac{1}{6}$ is M0		
	Implied by one answer correct to 2dp or by sight of $\binom{10}{3} \left(\frac{1}{6}\right)^3 \left(\frac{5}{6}\right)^7$ or one of :		
	$[P(X = 0) =]$ 0.16 (1), $[P(X = 1) =]$ 0.32 (3), $[P(X = 2) =]$ 0.29 (0), $[P(X \le 3) =]$ 0.93 (0)		
(i)	1 st A1 for awrt 0.155		
(ii)	2 nd A1 for awrt 0.775		
(b)	1 st M1 for selecting a correct model. Sight or use of correct binomial, ft their (a)(i) May be implied by eight of $IP(D < 11) = 10.78$, or $IP(D < 12) = 10.87$		
	May be implied by sight of $[P(D \le 11) =]0.78$ or 0.79 or $[P(D \le 12) =]0.87$ 2^{nd} M1 for correct interpretation of "at least 12" and writing or using $1 - P(D \le 11)$		
	We are <u>not</u> attempting to ft their incorrect 0.155 on our calculators here.		
	A1 for awrt 0.212 [Answer only 3/3]		
(c)	B1 for 100 but must be seen in part (c) i.e. between (b) and (d)		
(d)	1^{st} M1 for attempting normal with mean = 100 or ft their answer to (c)		
	May be implied by the correct mean and a correctly labelled s.d. (σ) or var (σ^2)		
	1 st A1 for correctly labelled standard deviation allow $\sqrt{\frac{250}{3}} = \sqrt{83.3} = 9.1(28)$ or		
	correctly labelled variance. Implied by N(μ , $\frac{250}{3}$) or correct answer.		
	2^{nd} M1 for attempt at continuity correction i.e. sight of 95 ± 0.5 2^{nd} A1 for awrt 0.689 [Answer only 4/4]		
NB	If they don't state the model for 1st M1 but just give probabiliti	ies with	
	probability statements (Y is any letter):		
$\sigma = \frac{250}{3}$	1 st M1 implied by: $P(Y > 94.5) = 0.52(63)$, $P(Y > 95) = 0.52(39)$, $P(Y > 95) = 0.52(39)$	95.5) = 0.	.52(15)
No cc	$1^{\text{st}} \text{ M1 } 1^{\text{st}} \text{ A1 implied by: } P(T > 95) = 0.70(805)$		
	1^{st} M1 1^{st} A1 2^{nd} M1 implied by: $P(T > 94.5) = 0.72(657)$		
	Exact binomial gives 0.68567 and will likely score 0/4		