Qu 2	Scheme	Marks	AO
(a)	e.g. The <u>height (h)</u> <u>decreases</u> by about <u>1.28 m</u> for <u>each second</u> of the flight	B1	3.4
(b)	$H_0: \rho = 0$ $H_1: \rho < 0$	B1 (1)	2.5
	$[5\% \text{ 1-tail cv} =] (\pm) 0.5494$	M1	1.1a
	[r = -0.510 not sig] there is <u>insufficient</u> (o.e.) evidence of a negative	A1	2.2b
	<u>correlation</u> between <u>height</u> (or \underline{h}) and <u>time</u> (or \underline{t})		2.20
(c)	No – since points seem to follow a curve/quadratic (rather than a line) $\underline{\text{or}}$ since points are "non-linear" but regression line/ model is linear $\underline{\text{or}}$ e.g. between ($t = 5$ and 7) height drops by much more than 2.56 m $\underline{\text{or}}$ e.g. gradient is positive up to $t = 3.5$ (line gradient < 0) $\underline{\text{or}}$ e.g. gradient is positive initially (line gradient < 0) $\underline{\text{or}}$ e.g. gradient is positive and then negative	B1 (3)	2.4
(d)	$\frac{1}{2}$	(1)	
(u)	[$h = 38.1 - 0.78 (t - k)^2$ with] a suitable k i.e. in the range 3~4.5	B1	3.3
		(1) (6 marks)	
	Notes	(0 marks)	
(a)	B1 for a suitable interpretation in context [value can be 1.3 or 1.28 or "just over 1"] per sec Must have underlined words (o.e.) and units "m"or metres and "s" or seconds NB "descends" implies "height decreases" Condone e.g. "decreases by – 1.28 m"		
(b)	B1 for both hypotheses correct in terms of ρ [accept a p or p but not r or r]		
(~)	Must be attached to H_0 and H_1		
NB	M1 for a critical value corresponding to their H ₁ : 1-tail: awrt ± 0.549 or 2-tail (B0 scored for H ₁): awrt ± 0.632 (tables 0.6319) If hypotheses are in words and can deduce whether one or two-tail then use their words. If no hypotheses or their H ₁ is not clearly one or two-tail assume one-tail A1 a correct conclusion in context mentioning correlation and height and time A comparison or statement such as "not sig" is not needed but if seen must be correct. Do NOT award this A mark if contradictory comments or working seen e.g. "reject H ₀ " or comparison of 0.510 with significance level of 0.05 or e.g 0.549 > -0.510 Can award B0M1A1		
SC	B0 (for 2-tail) M0 (for $cv = \pm 0.549$) scored: Allow 1 mark (score as B0M0A1) for conclusion such as: " <u>insufficient</u> evidence of (negative) <u>correlation</u> between <u>height</u> and <u>time</u> of flight"		
(c)	B1 for saying no and giving a suitable supporting reason Don't allow "correlation" on its own instead of "gradient" B0 for simply saying "points don't lie close to a straight line" Need mention of curve or some other feature of scatter plot that <u>differs</u> from regression line. B0 for just "non-linear" without mention of the model being linear B0 for simply comparing 1 or 2 points – need a comment about general pattern		
(d)	B1 for a value of k in the range [3, 4.5] Do not need $k =$ Accept a value embedded in Jane's model. ISW any errors in multiplying out bracket.		