Question	Scheme	Marks	AOs
9(a)	Take moments about A (or any other complete method to produce an equation in S, W and α only)	M1	3.3
	$Wa\cos\alpha + 7W2a\cos\alpha = S 2a\sin\alpha$	A1 A1	1.1b 1.1b
	Use of $\tan \alpha = \frac{5}{2}$ to obtain S	M1	2.1
	S = 3W *	A1*	2.2a
		(5)	
(b)	R = 8W	B1	3.4
	$F = \frac{1}{4} R \ (= 2W)$	M1	3.4
	$P_{\text{MAX}} = 3W + F$ or $P_{\text{MIN}} = 3W - F$	M1	3.4
	$P_{\text{MAX}} = 5W$ or $P_{\text{MIN}} = W$	A1	1.1b
	$W \le P \le 5W$	A1	2.5
		(5)	
(c)	M(A) shows that the reaction on the ladder at B is unchanged	M1	2.4
	also <i>R</i> increases (resolving vertically)	M1	2.4
	which increases max F available	M1	2.4
		(3)	
(13 marks)			13 marks)

Ouestion 9 continued Notes: **(a)** 1st M1: for producing an equation in S, W and α only 1st A1: for an equation that is correct, or which has one error or omission **2nd A1:** for a fully correct equation 2nd M1: for use of $\tan \alpha = \frac{5}{2}$ to obtain S in terms of W only $3^{rd} A1^*$: for given answer S = 3W correctly obtained **(b)** for R = 8W**B1**: 1st M1: for use of $F = \frac{1}{4} R$ **2nd M1:** for either P = (3W + their F) or P = (3W - their F)1st A1: for a correct max or min value for a correct range for P 2^{nd} A1: for a correct range for P

(c)

1st M1: for showing, by taking moments about A, that the reaction at B is unchanged by the builder's assistant standing on the bottom of the ladder

 2^{nd} M1: for showing, by resolving vertically, that *R* increases as a result of the builder's assistant standing on the bottom of the ladder

 3^{rd} M1: for concluding that this increases the limiting friction at A