Question	Scheme	Marks	AOs
6.	Integrate v w.r.t. time	M1	1.1a
	$\mathbf{r} = 2t^{\frac{1}{2}}\mathbf{i} - 2t^{2}\mathbf{j} \ (+ \mathbf{C})$	A1	1.1b
	Substitute $t = 4$ and $t = 1$ into their r	M1	1.1b
	$t = 4$, $\mathbf{r} = 4\mathbf{i} - 32\mathbf{j}(+\mathbf{C})$; $t = 1$, $\mathbf{r} = 2\mathbf{i} - 2\mathbf{j}(+\mathbf{C})$ or $(4, -32)$; $(2, -2)$	A1	1.1b
	$\sqrt{2^2 + (-30)^2}$	M1	1.1b
	$\sqrt{904} = 2\sqrt{226}$	A1	1.1b
		(6)	

(6 marks)

Notes: Allow column vectors throughout

M1: At least one power increasing by 1.

A1: Any correct (unsimplified) expression

M1: Must have attempted to integrate v. Substitute t = 4 and t = 1 into their r to produce 2 vectors (or 2 points if just working with coordinates).

A1: $4\mathbf{i} - 32\mathbf{j}(+\mathbf{C})$ and $2\mathbf{i} - 2\mathbf{j}(+\mathbf{C})$ or (4, -32) and (2, -2). These can be seen or implied.

M1: Attempt at distance of form $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ for their points. Must have 2 non zero terms.

A1: $\sqrt{904} = 2\sqrt{226}$ or any equivalent surd (exact answer needed)