

Figure 1

The ladder AB shown in Figure 1 has length 2a and weight W.

The ladder rests in equilibrium with end A on rough horizontal ground and end B against a smooth vertical wall.

The ladder rests in a vertical plane perpendicular to the wall, and is inclined at angle θ to the ground.

The coefficient of friction between the ladder and the ground is μ .

The ladder is on the point of slipping.

The ladder is modelled as a uniform rod.

(a) Show that
$$\mu = \frac{1}{2 \tan \theta}$$

(b) If the ladder were not modelled as uniform, state how this would affect the calculated value of μ , explaining your answer carefully.

(2)

(7)