Question	Scheme	Marks	AO
	In this question mark parts (a) and (b) together.		
5(a)	Horizontal speed = $20\cos 30^\circ$	B1	3.4
	Vertical velocity at $t = 2$	M1	3.4
	$=20\sin 30^{\circ}-2g$	A1	1.1b
	$\theta = \tan^{-1} \left(\pm \frac{9.6}{10\sqrt{3}} \right)$	M1	1.1b
	Speed = $\sqrt{100 \times 3 + 9.6^2}$ or e.g. speed = $\frac{9.6}{\sin \theta}$	M1	1.1b
	19.8 or 20 $(m s^{-1})$ at 29.0° or 29° to the horizontal oe	A1	2.2a
		(6)	
(b)	Using sum of horizontal distances $= 50$ at $t = 2$	M1	3.3
	$(u\cos\theta)\times2 + (20\cos30^\circ)\times2 = 50$ $(u\cos\theta = 25 - 20\cos30^\circ)$	A1	1.1b
	Vertical distances equal	M1	3.4
	$\Rightarrow (20\sin 30^\circ) \times 2 - \frac{g}{2} \times 4 = (u\sin\theta) \times 2 - \frac{g}{2} \times 4$ $(20\sin 30^\circ = u\sin\theta)$	A1	1.1b
	Solving for both θ and u	M1	3.1b
	θ = 52° or better (52.47756849°) u = 13 or better (12.6085128)	A1	2.2a
		(6)	
(c)	It does not take account of the fact that they are not particles (moving freely under gravity) It does not take account of the size(s) of the balls It does not take account of the spin of the balls It does not take account of the wind g is not exactly 9.8 m s ⁻² N.B. If they refer to the mass or weight of the balls give B0	B1	3.5b
		(1)	
		(13)	

Ma	arks	Notes	
5a	B1	Seen or implied, possibly on a diagram	
	M1	Use of $v = u + at$ or any other complete method <u>using $t = 2$</u> Condone sign errors and sin/cos confusion.	
	A1	Correct unsimplified equation in v or v^2	
	M1	Correct use of trig to find a relevant angle for the direction. Must have found a horizontal and a vertical velocity component	
	M1	Use Pythagoras or trig to find the magnitude Must have found a horizontal and a vertical velocity component	
	A1	Or equivalent. Need magnitude and direction stated or implied in a diagram. (0.506 or 0.51 rads)	
5b	M1	First equation, in terms of u and θ (could be implied by subsequent working), using the horizontal motion with $t = 2$ used Condone sign errors and sin/cos confusion	
	A1	Correct unsimplified equation – any equivalent form	
	M1	Second equation, in terms of u and θ (could be implied by subsequent working), using the vertical motion – equating distances or just vertical components of velocities. Condone sign errors and sin/cos confusion	
	A1	Correct unsimplified equation – any equivalent form	
	M1	Complete strategy: all necessary equations formed and solve for u and θ N.B. This is an independent method mark but can only be earned if 50 m has been used in their solution.	
	A1	Both values correct. (Here we accept 2SF or better, since the g 's cancel) Allow radians for θ : 0.92 or better (0.915906) rads.	
5c	B1	Any factor related to the model as stated in the question. Penalise incorrect extras but ignore consequences e.g. 'AB (or the ground) is not horizontal' should be penalised or 'they do not move in a vertical plane' should be penalised	