Question 3 (Total 12 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
(a)	R F Z a	2m) 2m) lmg	P T 3m B 3mg
	$R = 2mg\cos\alpha = \frac{24mg}{13}$	B1	This mark is given for using the model to state the normal reaction between <i>A</i> and the plane
	$F_{\max} = \frac{1}{3}R = \frac{8mg}{13}$	B1	This mark is given for the use of $F = \mu R$
	Equation of motion for <i>A</i> is $T - F_{\text{max}} - 2mg \sin \alpha = 2ma$	M1	This mark is given for a method form an equation of motion for A
		A1	This mark is given for a correct equation of motion for A
	Equation of motion for <i>B</i> is 3mg - T = 3ma	M1	This mark is given for a method to form an equation of motion for <i>B</i>
		A1	This mark is given for a correct equation of motion for <i>B</i>
	$2(3mg - T) = 3(T - \frac{8mg}{13} - \frac{10mg}{13})$ $6mg - 2T = 3T - \frac{54mg}{13}$	M1	This mark is given for a method using the equations of motion for A and B to solve for T
	$5T = \frac{132}{13}mg \implies T = \frac{132}{65}mg$	A1	This mark is given for a full method and correct working to show the answer given
(b)	$F_{\text{max}} = \frac{8mg}{13} < \frac{10mg}{13}$ $\frac{10mg}{13}$ is the component of the weight parallel to the slope	M1	This mark is given for a comparison of F_{max} with the component of weight
	Thus A will move down the plane	A1	This mark is given for a fully justified and correct conclusion

