

Figure 1

A beam AB has weight 40 N and length 3 m.

The beam is freely hinged at the end A to a vertical wall.

The beam is held in equilibrium at an angle of 60° to the wall by a rope.

One end of the rope is attached to the point C on the beam, where  $AC = 2 \,\mathrm{m}$ .

The other end of the rope is attached to a point D on the wall, where D is vertically above A. The rope is perpendicular to the beam, as shown in Figure 1.

The rope and the beam lie in a vertical plane that is perpendicular to the wall.

The beam is modelled as a uniform rod and the rope as a light inextensible string.

Using the model, find

(a) the tension in the rope,

(b) the magnitude of the resultant force acting on the beam at A.

**(6)** 

(3)

If the rope was not modelled as being light,

(c) state how this would affect the tension along the rope, explaining your answer.

**(2)**