The ball hits the ground at the point A. The ball is modelled as a particle moving freely under gravity. (a) Show that, according to the model, $OA = \frac{u^2 \sin 2\theta}{1}$

(5)

A golfer hits a golf ball with speed $25 \,\mathrm{ms}^{-1}$ from a point X on horizontal ground. The golf ball hits the ground at the point Y. The angle of projection is θ to the horizontal, where $0 < \theta < 90^{\circ}$ The golfer requires the distance XY to be at least 40 m.

5. A small ball is projected with speed u from a point O on horizontal ground.

The angle of projection is θ to the horizontal, where $0 < \theta < 90^{\circ}$

The golf ball is modelled as a particle moving freely under gravity.

(b) Find, according to the model, the size of the largest possible angle θ

(2)

Given that $\theta = 30^{\circ}$ and that the golf ball is more than 3 m above the ground for T seconds,

(c) find the value of T. **(4)**