Que	estion	Scheme	Marks	AOs
2	(a)	Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$ or integrate to give: $\mathbf{v} = (-2\mathbf{i} + 2\mathbf{j}) + 2(4\mathbf{i} - 5\mathbf{j})$	M1	3.1a
		$(6i - 8j) (m s^{-1})$	A1	1.1b
			(2)	
2	(b)	Solve problem through use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$ or integration		
		$(M0 \text{ if } \mathbf{u} = 0)$	M1	3.1a
		Or any other complete method e.g use $\mathbf{v} = \mathbf{u} + \mathbf{a}T$ and $\mathbf{r} = \frac{(\mathbf{u} + \mathbf{v})T}{2}$:		
		$-4.5\mathbf{j} = 2t\mathbf{j} - \frac{1}{2}t^2 5\mathbf{j} \qquad (\mathbf{j} \text{ terms only})$	A1	1.1b
		The first two marks could be implied if they go straight to an algebraic equation.		
		Attempt to equate j components to give equation in T only	N/1	2.1
		$(-4.5 = 2T - \frac{5}{2}T^2)$	M1	2.1
		T = 1.8	A1	1.1b
			(4)	
2(c)		Solve problem by substituting <u>their</u> <i>T</i> value (M0 if <i>T</i> < 0) into the i component equation to give an equation in λ only: $\lambda = -2T + \frac{1}{2}T^2 \times 4$	M1	3.1a
		$\lambda = 2.9 \text{ or } 2.88 \text{ or } \frac{72}{25} \text{ oe}$	A1	1.1b
			(2)	
Notes: Accept column vectors throughout (8 matrix)				
2a	M1	For any complete method to give a v expression with correct no. of terr used, so if integrating, must see the initial velocity as the constant. Allow sign errors.	ns with $t =$	= 2
	A1	Cao isw if they go on to find the speed.		
2b	M1 For any complete method to give a vector expression for j component of displace in <i>t</i> (or <i>T</i>) only, using $\mathbf{a} = (4\mathbf{i} - 5\mathbf{j})$, so if integrating, RHS of equation must have to correct structure. Allow sign errors.			
	A1	Correct j vector equation in t or T . Ignore i terms.		
	M1	Must have earned 1 st M mark.		

		Equate j components to give equation in T (allow t) only (no j 's) which has come from a displacement. Equation must be a 3 term quadratic in T .		
	A1	cao		
2c	M1	Must have earned 1 st M mark in (b) Complete method - must have an equation in λ only (no i 's) which has come from an appropriate displacement (e.g M0 if a = 0 has been used) Expression for λ must be a quadratic in <i>T</i>		
	A1	cao		