Question	Scheme	Marks	AOs
4(a)	Take moments about A	M1	3.3
	$N \times \frac{4a}{\sin \alpha} = Mg \times 3a \cos \alpha$	A1	1.1b
	$\frac{9Mg}{25}$ *	A1*	1.1b
		(3)	
4(b)	Resolve horizontally	M1	3.4
	$(\to) F = \frac{9Mg}{25} \sin \alpha$	A1	1.1b
	Resolve vertically	M1	3.4
	$(\uparrow) R + \frac{9Mg}{25} \cos \alpha = Mg$	A1	1.1b
	Other possible equations:		
	$(\nwarrow), R\cos\alpha + \frac{9Mg}{25} = Mg\cos\alpha + F\sin\alpha$		
	$(\nearrow), Mg\sin\alpha = F\cos\alpha + R\sin\alpha$		
	$M(C)$, $Mg.2a\cos\alpha + F.5a\sin\alpha = R.5a\cos\alpha$		
	$M(G), \frac{9Mg}{25}.2a + F.3a\sin\alpha = R.3a\cos\alpha$		
	$M(B), Mg.3a\cos\alpha + F.6a\sin\alpha = R.6a\cos\alpha + \frac{9Mg}{25}a$		
	$(F = \frac{36Mg}{125}, R = \frac{98Mg}{125})$		
	$F = \mu R$ used	M1	3.4
	Eliminate R and F and solve for μ	M1	3.1b
	Alternative equations if they have at A:		
	X horizontally and Y perpendicular to the rod. $(S) V + \frac{9Mg}{r} = Mg \cos \alpha + V \sin \alpha$		
	$\frac{(7)^{1}}{25} - \log \cos \alpha + \Lambda \sin \alpha$		
	$(7), Mg \sin \alpha = A \cos \alpha$ $(4) 9Mg \cos \alpha + V \cos \alpha = Mc$		
	$(+), \frac{1}{25}\cos\alpha + I\cos\alpha = Mg$		
	$(\nwarrow), Y + \frac{9Mg}{25} = Mg \cos \alpha + X \sin \alpha$ $(\nearrow), Mg \sin \alpha = X \cos \alpha$ $(\uparrow), \frac{9Mg}{25} \cos \alpha + Y \cos \alpha = Mg$ $(\rightarrow), Y \sin \alpha + \frac{9Mg}{25} \sin \alpha = X$		

		$M(C), Mg.2a\cos\alpha + X.5a\sin\alpha = Y.5a$					
		$M(G), \frac{9Mg}{25}.2a + X.3a \sin \alpha = Y.3a$ M1A1 M1A1					
		$M(B), Mg.3a\cos\alpha + X.6a\sin\alpha = Y.6a + \frac{9Mg}{25}a$					
		$(X = \frac{4Mg}{3}, Y = \frac{98Mg}{75})$					
		Then $F = \mu R$ becomes: $X - Y \sin \alpha = \mu Y \cos \alpha$ M1					
		Eliminate X and Y and solve for μ M1					
		$\mu = \frac{18}{49}$ (0.3673accept 0.37 or better)	A1	2.2a			
			(7)				
			(10 r	narks)			
Note	es:						
4a	M1	M1 Correct no. of terms, dim correct, condone \sin/\cos confusion and sign errors for an equation in N and Mg only.					
		For perp distance allow any of : $\frac{4a}{\sin \alpha}$, $\frac{4a}{\cos \alpha}$, $5a$ but					
		use of any of : $6a$, $5a \sin \alpha$, $4a \cos \alpha$, or anything involving $\tan \alpha$ is M0					
		Also M0 if no a's in their first equation.					
	A1	Correct equation, trig does not need to be substituted					
	A1*	Given answer correctly obtained.					
4b	M1	Correct no. of terms, dim correct, condone sin/cos confusion and sign e	sin/cos confusion and sign errors				
	A1	Correct equation, trig does not need to be substituted but <i>N</i> does.					
	M1	Correct no. of terms, dim correct, condone sin/cos confusion and sign errors					
	A1	Correct equation, trig does not need to be substituted but <i>N</i> does.					
		N.B. The above 4 marks are for any two equations, either resolutions or moments or one of each. Mark best two equations.					
		Equations may appear in part (a) but must be used in (b) to earn marks.					
	M1	Must be used, e.g. seen on the diagram. i.e. M0 if merely quoting it. (M0 if $F = \mu \times \frac{9Mg}{25}$ used)					
	M1	Must have 3 equations (and all 3 previous M marks)					
	A1	Accept 0.37 or better					