The coefficient of friction between P and the plane is μ Brick P is in equilibrium and on the point of sliding down the plane.

1. A rough plane is inclined to the horizontal at an angle α , where $\tan \alpha = \frac{3}{4}$

Brick P is modelled as a particle. Using the model,

A brick P of mass m is placed on the plane.

(a) find, in terms of m and g, the magnitude of the normal reaction of the plane on brick P

(b) show that $\mu = \frac{3}{4}$

For parts (c) and (d), you are not required to do any further calculations.

Brick P is now removed from the plane and a much heavier brick Q is placed on the plane. The coefficient of friction between Q and the plane is also $\frac{3}{4}$

(c) Explain briefly why brick Q will remain at rest on the plane.

Brick Q is now projected with speed 0.5 m s⁻¹ down a line of greatest slope of the plane. Brick Q is modelled as a particle.

Using the model, (d) describe the motion of brick Q, giving a reason for your answer.

(2)

(1)

(2)

(4)