

ure 2

A small ball is projected with speed $U \text{m s}^{-1}$ from a point O at the top of a vertical cliff.

The point O is 25 m vertically above the point N which is on horizontal ground.

The ball hits the ground at a point A, where $AN = 100 \,\mathrm{m}$, as shown in Figure 2.

---- ----, ... ----, ... ----, ... ----, ... ----, ... ----, ... ----, ...

The motion of the ball is modelled as that of a particle moving freely under gravity.

Using this initial model,

(a) show that U = 28

The ball is projected at an angle of 45° above the horizontal.

(b) find the greatest height of the ball above the horizontal ground NA.

In a refinement to the model of the motion of the ball from O to A, the effect of air

- resistance is included.
- This refined model is used to find a new value of U.
- (c) How would this new value of *U* compare with 28, the value given in part (a)?
- (d) State one further refinement to the model that would make the model more realistic.
 - (1)

(1)

(6)

(3)