5. At time t seconds, a particle P has velocity $\mathbf{v} \, \mathbf{m} \, \mathbf{s}^{-1}$, where

$$\frac{(a)}{a} = \frac{dv}{dt} = \frac{d\left(3t^{\frac{1}{2}}\right)}{dt} = \begin{pmatrix} \frac{3}{2}t^{-\frac{1}{2}} \\ -2t \end{pmatrix} \quad \mathbf{v} = 3t^{\frac{1}{2}} \mathbf{i} - 2t\mathbf{j} \qquad t$$

(a) Find the acceleration of P at time t seconds, where t > 0

(b) Find the value of t at the instant when P is moving in the direction of $\mathbf{i} - \mathbf{j}$

(3) At time
$$t$$
 seconds, where $t > 0$, the position vector of P , relative to a fixed origin O ,

is r metres.

When
$$t = 1$$
, $\mathbf{r} = -\mathbf{j}$

(c) Find an expression for \mathbf{r} in terms of t . When $t = 1$, $t = -1$ in terms of t . When $t = 1$, $t = -1$ in terms of t . When $t = 1$, $t = -1$ in terms of t . When $t = 1$, $t = -1$ in terms of t . When $t = 1$ in terms of t . When $t = 1$ in terms of t . When $t = 1$ in terms of t . When $t = 1$ in terms of t . When $t = 1$ in terms of t .

(d)
$$\frac{1}{2}$$
 speed = $10 = \sqrt{(3t^{\frac{1}{2}})^2 + (-2t)^2}$ (Imark)

$$= \sqrt{9t + 4t^2}$$

$$\Rightarrow 100 = 9t + 4t^2 \Rightarrow 4t^2 + 9t - 100 = 0$$
(Imark)

when
$$t=4$$
, $r=\left(24^{\frac{3}{2}}-2\right)=\left(14\right)$ (I mark) $-(4)^2$

distance =
$$\sqrt{14^2 + (-16)^2}$$
 (1 mark)
= $\sqrt{196 + 256}$