2	(a)	$(3t-1)\mathbf{i} + 2\mathbf{j} = 0.5\mathbf{a}$	M1	3.1a
		Integrate their a wrt t	M1	2.1
		$(3t^2 - 2t)\mathbf{i} + 4t\mathbf{j} \ (+\mathbf{C})$	A1	1.1b
		Find C and substitute in $t = 2$	M1	1.1b
		$9i + 7j \ (m \ s^{-1})$	A1	1.1b
			(5)	
2(b)		Integrate their v wrt t	M1	2.1
		$(t^3-t^2+t)\mathbf{i}+(2t^2-t)\mathbf{j}$ (+ D)	Alft	1.1b
		Solve problem by putting $t = 2$ and using Pythagoras, with square root	M1	3.1a
		$\sqrt{72}$ oe, 8.5 or better (m)	A1	1.1b
			(4)	
	(9 mark			
Notes: Accept column vectors throughout				
2a	M1	Use of $\mathbf{F} = m\mathbf{a}$, with $m = 0.5$ seen or implied		
	M1	At least two powers increasing by 1		
	A1	Correct vector expression		
	M1	Use boundary condition to find C and sub in $t = 2$		
	A1	cao		
2b	M1	At least two powers increasing by 1		
	A1ft	Follow their v		
	M1	Putting $t = 2$ into their vector displacement expression and finding the magnitude		
	A1	cao		