The origin O is on the plane. At time t = 0, P passes through O moving with velocity $(\mathbf{i} - \mathbf{j}) \,\mathrm{m \, s}^{-1}$

At time t seconds, the resultant horizontal force acting on P is

$$[(3t-1)\mathbf{i}+2\mathbf{j}]\,\mathbf{N}$$

(a) Find the velocity of P at t=2

(a) Find the velocity of
$$P$$
 at $t = 2$

(b) Find the distance of
$$P$$
 from O at $t = 2$

2.

=
$$m \alpha$$

= $0.5(\alpha;)$ (Imark) \Rightarrow

$$(1 \text{mark}) \Rightarrow (3t^2)$$

 $V = \int a dt = \int (6t^{-2}) dt = (3t^2 - 2t + c_i)$ (2 marks)

at
$$t=0$$
, $v=\begin{pmatrix} 1\\-1 \end{pmatrix}$, so $\begin{pmatrix} 1\\-1 \end{pmatrix} = \begin{pmatrix} 3(0)^2 - 2(0) + Ci\\4(0) + Ci \end{pmatrix} \implies C_i = 1$

So, $V = \begin{pmatrix} 3t^2 - 2t + 1 \\ 4t - 1 \end{pmatrix}$ At t = 2, $V = \begin{pmatrix} 3(2)^2 - 2(2) + 1 \\ 4(2) - 1 \end{pmatrix} = \begin{pmatrix} 9 \\ 7 \end{pmatrix} ms^{-1} \begin{pmatrix} 2 merks \end{pmatrix}$

(b) $5 = \int V dt = \int (3t^2 - 2t + 1) dt = (t^3 - t^2 + t + k_1)$ (2 marks)

at t=0, s=(0), $so(0) = (0^3 - 0^2 + 0 + k_i) = k_i = 0$ $(0)^2 - 0 + k_i) = k_i = 0$

So, $s = (t^3 - t^2 + t)$ $2t^2 - t$ At t = 2, $s = (2^3 - 2^2 + 2) = (6)$ m

distance = |5| = \(\int 6^2 + 6^2 = \sqrt{72} m \) (2 marks)

$$(2)$$

$$\Rightarrow c$$

(4)

(5)