Question	Scheme	Marks	AOs
3(a)	$(4\mathbf{i} - \mathbf{j}) + (\lambda \mathbf{i} + \mu \mathbf{j}) = (4 + \lambda)\mathbf{i} + (-1 + \mu)\mathbf{j}$	M1	3.4
	Use ratios to obtain an equation in λ and μ only	M1	2.1
	$\frac{(4+\lambda)}{(-1+\mu)} = \frac{3}{1} \qquad \text{or} \qquad \frac{\frac{1}{4}(4+\lambda)}{\frac{1}{4}(-1+\mu)} = \frac{3}{1}$	A1	1.1b
	$\lambda - 3\mu + 7 = 0^*$ Allow $0 = \lambda - 3\mu + 7$ but nothing else.	A1*	1.1b
		(4)	
(b)	$\lambda = 2 \Rightarrow \mu = 3$; Resultant force = $(6\mathbf{i} + 2\mathbf{j})$ (N)	M1	3.1a
	(6i+2j) = 4a OR $ (6i+2j) = 4a$	M1	1.1b
	Use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$ with $\mathbf{u} = 0$, their \mathbf{a} and $t = 4$: Or they may integrate their \mathbf{a} twice with $\mathbf{u} = 0$ and put $t = 4$:	DM1	2.1
	$\mathbf{r} = \frac{1}{2} \times \frac{(6\mathbf{i} + 2\mathbf{j})}{4} 4^2 = (12\mathbf{i} + 4\mathbf{j})$		
	$\sqrt{12^2 + 4^2}$	M1	1.1b
	ALTERNATIVE 1 for last two M marks:		
	Use of $s = ut + \frac{1}{2}at^2$, with $u = 0$, their a and $t = 4$: DM1		
	$s = \frac{1}{2} \times \sqrt{1.5^2 + 0.5^2} \times 4^2$		
	Use of Pythagoras to find mag of a : $a = \sqrt{1.5^2 + 0.5^2}$ M1		
	ALTERNATIVE 2 for last two M marks:		
	Use of $s = ut + \frac{1}{2}at^2$, with $u = 0$, their a and $t = 4$: DM1		
	$s = \frac{1}{2} \times \left(\frac{\sqrt{6^2 + 2^2}}{4}\right) \times 4^2$		
	Use of Pythagoras to find $ (6\mathbf{i}+2\mathbf{j}) $: = $\sqrt{6^2+2^2}$ M1		
	$\sqrt{160}$, $2\sqrt{40}$, $4\sqrt{10}$ oe or 13 or better (m)	A1	1.1b
		(5)	
		(9 n	narks)

Notes: Accept column vectors throughout

3 a	M1	Adding the two forces, i 's and j 's must be collected (or must be a single column vector) seen or implied	
	M1	Must be using ratios; Ignore an equation e.g. $(4 + \lambda)\mathbf{i} + (-1 + \mu)\mathbf{j} = 3\mathbf{i} + \mathbf{j}$ if they go on to use ratios.	

		However, if they write $4 + \lambda = 3$ and $-1 + \mu = 1$ then $3(-1 + \mu) = 3$ so
		$4 + \lambda = 3(-1 + \mu)$ with no use of a constant, it's M0
		They may use the acceleration, with a factor of $\frac{1}{4}$ top and bottom, see alternative
		Allow one side of the equation to be inverted
	A1	Correct equation
	A1*	Given answer correctly obtained. Must see at least one line of working, with the LH fraction 'removed'.
3b	M1	Adding \mathbf{F}_1 and \mathbf{F}_2 to find the resultant force, λ and μ must be substituted
		N.B. M0 if they use $\mu = 2$ coming from $-1 + \mu = 1$ in part (a).
	M1	Use of $\mathbf{F} = 4\mathbf{a}$ Or $ \mathbf{F} = 4a$, where F is <u>their</u> resultant. (including $3\mathbf{i} + \mathbf{j}$)
		This is an independent mark, so could be earned, for example, if they have subtracted the forces to find the 'resultant'
		N.B. M0 if only using \mathbf{F}_1 or \mathbf{F}_2
	DM	Dependent on previous M mark for
	1	Either: use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$ with $\mathbf{u} = 0$, their \mathbf{a} and $t = 4$ to produce a
		displacement vector
		Or : integrate twice, with $\mathbf{u} = 0$, their \mathbf{a} and $t = 4$ to produce a displacement Vector
		Or: use of $s = ut + \frac{1}{2}at^2$ with $u = 0$, their <i>a</i> and $t = 4$ to produce a length
		Use of Pythagoras, with square root, to find the magnitude of their displacement
	M1	vector, a or F (M0 if only using \mathbf{F}_1 or \mathbf{F}_2) depending on which method they have used.
	A1	cao