Question	Scheme	Marks	AOs
5(a)	Using horizontal motion	M1	3.3
	Whole Motion Half way		
	$U\cos\alpha \times t = 120 \qquad \qquad U\cos\alpha \times t = 60$	A1	1.1b
	Using vertical motion OR	M1	3.4
	$U\sin\alpha \times t - \frac{1}{2}gt^2 = 0 \qquad \qquad 0 = U\sin\alpha - gt$	A1	1.1b
	Attempt to solve problem by eliminating <i>t</i>	DM1	3.1b
	$U^2 \sin \alpha \cos \alpha = 588 *$	A1*	2.2a
		(6)	
	N.B. No credit given if they use the given answer from (b).		
5(b)	Using vertical motion OR conservation of energy	M1	3.4
	$0^{2} = (U \sin \alpha)^{2} - 2g \times 10 \qquad \frac{1}{2}mU^{2} - \frac{1}{2}m(U \cos \alpha)^{2} = mg \times 10$	A1	1.1b
	ALTERNATIVE I: If t is time to top: use of $10 = \frac{1}{2}gt^2$ oe $(t = \frac{10}{7})$ to obtain an equation in U and α only M1 $U \sin \alpha = 14$ or $U \cos \alpha = 42$ A1 ALTERNATIVE 2: If t is time to top: use of : $10 = U \sin \alpha t - \frac{1}{2}gt^2$ with $t = \frac{60}{U \cos \alpha}$ substituted to obtain an equation in U and α only : M1 $10 = U \sin \alpha \times \frac{60}{U \cos \alpha} - \frac{1}{2}g\left(\frac{60}{U \cos \alpha}\right)^2$ A1		
	Attempt to solve problem by eliminating α : e.g. $U \sin \alpha = 14 \Rightarrow U \cos \alpha = 42$, from part (a) or from using $t = \frac{10}{7}$, then square and add to give result OR: $U^2 \sin^2 \alpha = 20g = 196$ and $U^2 \sin \alpha \cos \alpha = 588$, divide to give $\tan \alpha = \frac{1}{3}$ then $\sin^2 \alpha = \frac{1}{10}$, hence result OR in ALTERNATIVE 2 : sub for U^2 using part (a), to give $\tan \alpha = \frac{1}{3}$ then $\sin^2 \alpha = \frac{1}{10}$, hence result	DM1	3.1b

		N.B. Just stating that $\sin^2 \alpha = \frac{1}{10}$, with no working is DM0A0.				
		$U^2 = 1960 *$	A1*	2.2a		
		N.B. Verification (i.e. starting with $U^2 = 1960$ and trying to work backwards) is not an acceptable method for this question.				
			(4)			
5(c)		V, since air resistance has to be overcome, or just 'because of \underline{air} resistance' isw	B1	3.5a		
			(1)			
5(d)		e.g. wind effects, more accurate value of <i>g</i> , spin of ball, size of ball, shape of ball, dimensions of ball, not a particle, variable acceleration, surface area of ball, humidity. Allow wind resistance and rotational resistance (Ignore any mention of air resistance or drag)	B1	3.5c		
			(1)			
		1	(12 n	narks)		
Note	es:					
5a		N.B. Could score 2/6 for any one of the 4 given equations if there is no corresponding second equation or there is an attempt but it's incorrect.				
	M1	Complete method to give equation in U , α and t only, condone sin/cos confusion and sign errors, each term that needs to be resolved must be resolved				
	A1	Correct equation				
	M1	Complete method to give equation in U , α and t only, condone sin/cos confusion and sign errors, each term that needs to be resolved must be resolved				
	A1	Correct equation				
	DM 1	Eliminate t , dependent on first and second M1's				
	A1*	Given answer correctly obtained, with no wrong working seen. Allow $588 = U^2 \sin \alpha \cos \alpha$ but nothing else				
5b	M1	Complete method to give equation in U and α only with correct no. of terms, condone sin/cos confusion and sign errors, each term that needs to be resolved must be resolved				
	A1	Correct equation				
	DM 1	Eliminate α and rearrange, dependent on first M1				
	A1*	Given answer correctly obtained with <u>no wrong working seen</u> (N.B. If they use a value for α (18.43.°.) they lose the final A1*)				
5c	B1	Clear statement isw				
5d	B1	B0 if there is an incorrect extra e.g. mass or weight				