[In this question, i and j are horizontal unit vectors.] A particle P of mass 4kg is at rest at the point A on a smooth horizontal plane.

At time t = 0, two forces, $\mathbf{F}_1 = (4\mathbf{i} - \mathbf{j}) \mathbf{N}$ and $\mathbf{F}_2 = (\lambda \mathbf{i} + \mu \mathbf{j}) \mathbf{N}$, where λ and μ are

constants, are applied to P

Given that P moves in the direction of the vector (3i + j)

(a) show that

$$\lambda - 3\mu + 7 = 0$$

At time
$$t = 4$$
 seconds, P passes through the point B .

Given that $\lambda = 2$

Given that
$$\lambda = 2$$

(b) find the length of AB

(b) find the length of AB.

(a) Total Force on
$$P$$
,
$$F = F_1 + F_2 = \begin{pmatrix} 4 \\ -1 \end{pmatrix} + \begin{pmatrix} \lambda \\ \mu \end{pmatrix} = \begin{pmatrix} 4 + \lambda \\ \mu - 1 \end{pmatrix} N$$

3.

Because P starts at rest, acceleration is in the direction $\binom{3}{1} = \binom{3k}{k}$ for some scalar k

acceleration is in the direction
$$F = ma \Rightarrow (4+\lambda) =$$

 $F = m\alpha \Rightarrow \left(\frac{4+\lambda}{\mu-1}\right) = 4\left(\frac{3k}{k}\right) \Rightarrow 4+\lambda = 12k \Rightarrow k = \frac{4+\lambda}{12}$ $\mu-1 = 4k \Rightarrow k = \frac{\mu-1}{4}$

$$\frac{+\lambda}{12} = \frac{\mu-1}{4} \Rightarrow$$

(b) Given
$$\lambda = 2$$
, 2-
 $F = (4+2) = (6+2) = ($

$$F = (4+2) = (3-1)$$
50 $k = \frac{1}{2}$, $a = (4+2)$

50,
$$\frac{4+\lambda}{12} = \frac{\mu-1}{4} \implies 16+4\lambda = 12\mu - 12$$

 $4+\lambda = 3\mu - 3$

$$6 + 4\lambda = 12\mu - 12$$

 $4 + \lambda = 3\mu - 3$
 $-3\mu + 7 = 0$

(4)

(5)

(2 marks)

(I mark)

$$7 = 0 \Rightarrow \mu = 3$$

(b) Given
$$\lambda = 2$$
, $2 - 3\mu + 7 = 0 \Rightarrow \mu = 3$
 $F = (4 + 2) = (6) = m\alpha = 4(3k) = (12k)$
 $(3k) = (3k)$

50,
$$k = \frac{1}{2}$$
, $a = \begin{pmatrix} \frac{3}{2} \\ \frac{1}{2} \end{pmatrix}$
 $5 = ut + \frac{1}{2}qt^2$, $5(4) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} 4 + \frac{1}{2} \begin{pmatrix} \frac{3}{2} \\ \frac{1}{2} \end{pmatrix} 4^2 = \begin{pmatrix} 12 \\ 4 \end{pmatrix} m$. (1 mark)

distance AB = distance from (0) to (12) = /122+42 = 5160 = 4510 m (2 marks)