Question		Scheme	Marks	AOs		
3	(a)	7i – 3j seen or implied by Pythagoras	B1	1.1b		
		Use Pythagoras: $\sqrt{7^2 + (-3)^2}$	M1	3.1a		
		$\sqrt{58}$, 7.6 or better (${ m m~s^{-1}}$)	A1	1.1b		
			(3)			
3	(b)	$t^{2}-3t+7=2t^{2}-3$ OR $\frac{t^{2}-3t+7}{2t^{2}-3}=\frac{1}{1}=1$	M1	2.1		
		t = 2 only	A1	1.1b		
			(2)			
3(c)		Differentiate v wrt <i>t</i> to give a vector.	M1	3.1a		
		$(2t-3)\mathbf{i}+4t\mathbf{j}$	A1	1.1b		
			(2)			
3(d)		2t - 3 = 0	M1	3.1a		
		<i>t</i> = 1.5	A1	1.1b		
			(2)			
			(9	marks)		
Notes: Allow column vectors throughout.						
3 a	B1	сао				
	M1	Use of Pythagoras, including the square root, on a velocity vector at <i>t</i> = 0				
	A1	cao. Must come from a <u>correct</u> v .				
3b	M1	Equating i and j components of v or a ratio of 1:1 to obtain a quadratic in <i>t</i> or	nly.			
		If they use a constant, e.g. $t^2 - 3t + 7 = k$ and $2t^2 - 3 = k$, k must be eliminal mark.	ated to ear	n this		
		N.B. M0 (since wrong working seen) if they write down				
		$\mathbf{i} + \mathbf{j} = (t^2 - 3t + 7)\mathbf{i} + (2t^2 - 3)\mathbf{j}$				
		$\mathbf{OR} \begin{pmatrix} 1\\1 \end{pmatrix} = \begin{pmatrix} t^2 - 3t + 7\\2t^2 - 3 \end{pmatrix}$				
		OR $t^2 - 3t + 7 = 1$ and $2t^2 - 3 = 1$				

		and then $t^2 - 3t + 7 - 2t^2 - 3$		
	A1	t = 2		
		N.B. Allow M1A1 for a correct trial and error method where they obtain $\mathbf{v} = 5\mathbf{i} + 5\mathbf{j}$ when $t = 2$ but M0 if they don't get $t = 2$		
Зс	M1	 At least one power decreasing by 1 in each component in their v (M0 if clearly dividing by t) Both i and j needed in their answer or a column vector Allow recovery if the i and j disappear and then reappear. 		
	A1	cao (must be a vector) isw e.g. if they find the magnitude or put $t = 0$ or differentiate again i's and j's do not need to be collected. N.B. Allow M1A0 for $2t - 3\mathbf{i} + 4t\mathbf{j}$		
3d	M1	2t - 3 = 0 or (their derivative of the i -component of v) = 0 N.B . M0 if they equate the derivative of both components of v to zero.		
	A1	cao N.B. Correct answer, with no working, can score both marks.		