Question	Scheme	Marks	AOs
6(a)	The normal reaction at <i>B</i> is acting to the left so it must act to the right, right as it needs to balance (oppose, counter) the force at <i>B</i> , right as it prevents the rod from sliding (slipping, falling), right as the weight (mass) of the rod will mean the rod tends to slip left, mass or weight will be pushing the rod to the left so friction will oppose that. N.B. You may see an arrow on the diagram at <i>A</i> , instead of 'right'.	B1	2.4
	B0 if they say the rod is moving oe		
	Accept towards the wall instead of to the right.		
		(1)	
6(b)	Take moments about A	M1	3.4
	$S \times 2a\sin\theta = Mga\cos\theta$	A1	1.1b
	$S = \frac{1}{2} Mg \cot \theta *$	A1*	2.2a
		(3)	
6(c)	Resolve vertically, R = Mg	B1	3.3
	Resolve horizontally, $F = S$	B1	3.3
	Other possible equations:		
	Resolve along the rod, $F \cos \theta + R \sin \theta = S \cos \theta + Mg \sin \theta$		
	Resolve perp to the rod, $R\cos\theta + S\sin\theta = F\sin\theta + Mg\cos\theta$		
	$M(B), R \times 2a \cos \theta = F \times 2a \sin \theta + Mga \cos \theta$		
	$M(G), \ Ra\cos\theta = Fa\sin\theta + Sa\sin\theta$		
	N.B. When entering these two B marks on ePEN,		
	First B1 is for a vertical resolution, second B1 is for a horizontal resolution,		
	and if either is replaced by a different equation, enter appropriately.		
	appear in their working.		
	$F = \mu R$	B1	1.2
	$\frac{1}{2}Mg \times \frac{4}{3} = \mu Mg$	dM1	2.1
	$\mu = \frac{2}{3}$ oe Accept 0.67 or better	A1	2.2a
	S.C. For F ,, μR , BO		
	$\frac{1}{2}Mg \times \frac{4}{3}$,, μMg M1		

		$\frac{2}{3},, \mu$ A0		
		N.B. If $\mu = \frac{2}{3}$ follows this, they could score all the marks.		
			(5)	
6	(d)	$\sqrt{F^2+R^2}$	M1	3.1a
		$\sqrt{\left(\frac{2}{3}Mg\right)^2 + \left(Mg\right)^2}$	M1	1.1b
		$\frac{1}{3}Mg\sqrt{13}$ or 1.2Mg or better	A1	2.2a
			(3)	
6(e)		New value of <i>S</i> would be larger as the moment of the weight about <i>A</i> would be larger	B1	3.5a
			(1)	
			(13	marks)
Note	es:			
6a	B1	Any equivalent appropriate statement.		
6b	M1	Correct no. of terms, dimensionally correct, condone sin/cos confusion and s	ign errors.	
		N.B. If <i>a</i> 's never appear, M0		
	A1	Correct equation		
	A1*	Correct given answer correctly obtained, with no wrong working seen.		
		Allow $\frac{1}{2}Mg \cot \theta = S$ or $S = \frac{Mg \cot \theta}{2}$ or $\frac{Mg \cot \theta}{2} = S$ or $S = \frac{Mg}{2} \cot \theta$) or similar	
		but NOT $S = \frac{1}{2} \cot \theta$ Mg or similar		
		N.B. Allow <i>m</i> instead of <i>M</i>		
		Must be $ heta$ in final answer but allow a different angle in the working.		
6c	B1	сао		
	B1	сао		
	B1	Seen anywhere, e.g. on the diagram		
	dM 1	Using $F = \mu R$, their two equations and substitute for trig (not necessarily c	orrectly) to	
		produce an equation in μ only.		
		This mark is dependent on the 3 previous B marks.		
	A1	Accept 0.67 or better		

6d	M1	Use of Pythagoras with square root to find the required magnitude, but <i>F</i> and <i>R</i> do not need to be substituted
	M1	Substitute for their <i>F</i> and their <i>R</i> in terms of <i>Mg</i> and take square root to obtain magnitude in terms of <i>M</i> and <i>g</i> only.
		N.B. Must be using Pythagoras
		ALTERNATIVE: Using trig on triangle of forces
		M1: $X = \frac{Mg}{\sin \alpha}$ or $\frac{S}{\cos \alpha}$
		M1: substitute for $\sin \alpha$ or $\cos \alpha$ and S, where $\tan \alpha = \frac{Mg}{S} (=\frac{3}{2})$, to obtain X in terms of M
	A 1	Any equivalent surd form or 1.204g or better
	AI	Must be in terms of <i>M</i> and <i>g</i>
6e	B1	Correct answer and any equivalent appropriate statement.