At time t seconds, where $t \ge 1$, the velocity vector of a particle P is modelled as $\mathbf{v} \, \mathbf{m} \, \mathbf{s}^{-1} \, \mathbf{w} \mathbf{h} \mathbf{e} \mathbf{r} \mathbf{e}$ $\mathbf{v} = 2t\mathbf{i} - 6t^{\frac{1}{2}}\mathbf{j}$

3. [*In this question, position vectors are given relative to a fixed origin.*]

(a) Find the velocity of
$$P$$
 at $t = 9$, giving your answer in terms of **i** and **j**.

(1)

(2)

(4)

(4)

(b) Find an expression for the acceleration of
$$P$$
 at time t seconds, where $t \ge 1$
Give your answer in terms of t , \mathbf{i} and \mathbf{j} .

When
$$t = 1$$
, P is at the point with position vector $(\mathbf{i} - 2\mathbf{j})$ m.

(c) Find an expression for the position vector of
$$P$$
 at time t seconds, where $t \ge 1$

(c) Find an expression for the position vector of
$$P$$
 at time t seconds, where $t \ge 1$

(c) Find an expression for the position vector of
$$P$$
 at time t seconds, where $t \ge 1$

(c) Find an expression for the position vector of
$$P$$
 at time t seconds, where $t \ge 1$.
Give your answer in terms of t , \mathbf{i} and \mathbf{i}

Give your answer in terms of
$$t$$
, \mathbf{i} and \mathbf{j} .

Give your answer in terms of
$$t$$
, \mathbf{i} and \mathbf{j} .

When
$$t = T$$
. P is moving in the direction of $(Ai \quad i)$

When
$$t = T$$
, P is moving in the direction of $(4\mathbf{i} - \mathbf{j})$.

When
$$t = T$$
, P is moving in the direction of $(4\mathbf{i} - \mathbf{j})$.