Question	Scheme	Marks	AOs
4 (a)	ALTERNATIVES when $t = 4$ is substituted at the beginning.		
	$2c\mathbf{i} - 6\mathbf{j}$ or as a column vector, seen or implied.	B1	1.1b
	ALT 1 O $ALT 1$ O $ALT 1$ O $ALT 2$ C C AND C P AND C C P C C P C C P C	M1	3.1a
	<i>c</i> = 3 *	A1*	2.2a
	SC 1 M1A0: no right-angled triangle $2c\mathbf{i} - 6\mathbf{j} = k(\mathbf{i} - \mathbf{j}) => 2c = 6$ or $\mathbf{i} - cpt = -\mathbf{j} - cpt => 2c = 6$ N.B. In both of the above, we must see the justification for the equation. SC 2 M1A0: no right-angled triangle $\tan 45^{\circ} = \frac{2c}{6}$ or $\frac{6}{2c} => 2c = 6$ N.B. In the above, we must see the justification for the equation.		

ALTERNATIVES when $t = 4$ is substituted at the end:		
$ct^{\frac{1}{2}} = 2c$ and $(-)\frac{3t^2}{8} = (-)6$ when $t = 4$, seen or implied	B1	
ALT 3 $ \begin{array}{c} ct^{\frac{1}{2}} \\ ct^{$	M1	
 N.B. M0 if they are using the wrong bearing.	A 1 *	
SC 3 M1A0: no right-angled triangle $(ct^{\frac{1}{2}}\mathbf{i} - \frac{3t^2}{8}\mathbf{j}) = k(\mathbf{i} - \mathbf{j}) \Rightarrow 2c = 6 \text{ when } t = 4$ or $\mathbf{i} \cdot \text{cpt} = -\mathbf{j} \cdot \text{cpt} \Rightarrow ct^{\frac{1}{2}} = \frac{3t^2}{8} \Rightarrow 2c = 6 \text{ when } t = 4$ N.B. In both of the above, we must see the justification for the equation. SC 4 M1A0: no right-angled triangle $\tan 45^o = \frac{3t^2}{8} \Rightarrow 2c = 6 \text{ when } t = 4$	A1*	

	N.B. Allow a verification : i.e. use $c = 3$ and $t = 4$ to show that P is on		
	a bearing of 135° from <i>O</i> .		
	$6\mathbf{I} - 6\mathbf{J}$ then a diagram:	B1	
		M1	
	AND tan $\theta = \frac{6}{6}$ or isosceles triangle $\Rightarrow \theta = 45^{\circ}$		
	N.B. In the above, we must see the justification for the equation.		
	bearing = $45^{\circ} + 90^{\circ} = 135^{\circ}$	A1*	
		(3)	
4(b)	Differentiate \mathbf{r} wrt t to obtain \mathbf{v}	M1	2.1
	$\mathbf{v} = 3 \times \frac{1}{2}t^{-\frac{1}{2}}\mathbf{i} - \frac{3}{8} \times 2t\mathbf{j} = \frac{3}{2}t^{-\frac{1}{2}}\mathbf{i} - \frac{3}{4}t\mathbf{j}$ oe	A1	1.1b
	Put $t = 4$ into both components and use Pythagoras: $\sqrt{\left(\frac{3}{4}\right)^2 + (-3)^2}$	M1	3.1a
	$\sqrt{\frac{153}{16}}$ or $\frac{\sqrt{153}}{4}$ or $\frac{3\sqrt{17}}{4}$ or $3\sqrt{\frac{17}{16}} = 3.0923$ (m s ⁻¹)	A1	1.1b
		(4)	
4(c)	Differentiate their v wrt <i>t</i> to obtain a	M1	3.4
	$\mathbf{a} = -\frac{3}{4}t^{-\frac{3}{2}}\mathbf{i} - \frac{3}{4}\mathbf{j}$	A1	1.1b
	$\frac{-\frac{3}{4}T^{-\frac{3}{2}}}{-\frac{3}{4}} = \frac{-1}{-27} \text{oe}$	M1	2.1
	(T =) 9	A1	1.1b
		(4)	

(11	marks)
-----	--------

Note	es: Acc	cept column vectors throughout
4 a	B1	$2c\mathbf{i} - 6\mathbf{j}$ seen or implied. B0 for $\mathbf{r} = 2c - 6$ if no evidence of components.
	M1	ALT 1: Use the bearing to obtain a CORRECT diagram showing a right-angled triangle with at least one 45° angle marked or clearly explained (i.e. 135° marked on the diagram and either $135^{\circ} - 90^{\circ} = 45^{\circ}$ or $180^{\circ} - 135^{\circ} = 45^{\circ}$), and $2c$ and ± 6 marked AND use of isosceles triangle or tan or (sin/cos and Pythag) to obtain $2c = 6$
		ALT 2: No diagram required Use $\tan 135^\circ = \frac{2c}{-6} => 2c = 6$
	A1*	Given answer correctly obtained
		ALTERNATIVE when $t = 4$ is substituted at the end:
	B1	$ct^{\frac{1}{2}} = 2c$ and $(-)\frac{3t^2}{8} = (-)6$ when $t = 4$, seen or implied
	M 1	ALT 3: Use the bearing to obtain a CORRECT diagram showing a right-angled triangle with at least one 45° angle marked or clearly explained (i.e. 135° marked on the
		diagram and either $135^{\circ} - 90^{\circ} = 45^{\circ}$ or $180^{\circ} - 135^{\circ} = 45^{\circ}$), and $ct^{\frac{1}{2}}$ and $\pm \frac{3t^{2}}{2}$ marked
		AND use of isosceles triangle or tan or (sin/cos and Pythag) to obtain $2c = 6$ when $t = 4$
	A1*	Given answer correctly obtained
4b	M1	Both powers of <i>t</i> decreasing by 1 (M0 if i or j is missing but allow recovery or working with components only) N B . This mark is available if <i>c</i> has not been substituted for
	A1	Correct unsimplified derivative or two correct components
	M1	Put $t = 4$ in their v (must be using an attempted derivative of r) and then use Pythagoras with the root, allow a missing $-$ sign N.B. If they state $t = 4$, allow a slip when they substitute in, for this M mark. This mark is available if <i>c</i> has not been substituted for.
	A1	Accept 3.1 or better
4c	M1	Both powers of <i>t</i> decreasing by 1 N.B. This mark is available if <i>c</i> has not been substituted for (M0 if i or j is missing but allow recovery or working with components only).
	A1	Correct unsimplified derivative
	M1	Use of an appropriate ratio (must be using an attempted derivative of their v), condone sign error and the reciprocal , to obtain an equation in t or T only.
		N.B. If they state that $-\frac{3}{4}T^{-\frac{3}{2}}\mathbf{i} - \frac{3}{4}\mathbf{j} = k(-\mathbf{i} - 27\mathbf{j})$ and then equate coefficients to give
		two simultaneous equations in k and T , these need to be used to produce an equation in T only, before the M mark is earned.
	A1	cao (allow t instead of T)