Question	Scheme	Marks	AOs
5(a)	Using horizontal motion, $s = ut$, with 35 resolved	M1	3.3
	$x = 35 \cos \alpha \times t$	A1	1.1b
	Using vertical motion, $s = ut + \frac{1}{2}at^2$, with 35 resolved	M1	3.4
	$y = 35\sin\alpha \times t - \frac{1}{2}gt^2$	A1	1.1b
	Eliminate $t: y = 35 \sin \alpha \times \frac{x}{35 \cos \alpha} - \frac{1}{2} g \left(\frac{x}{35 \cos \alpha}\right)^2$	DM1	3.1b
	$y = \frac{3}{4}x - \frac{1}{160}x^2 *$	A1*	1.1b
	N.B. No marks available if they just quote the equation of the path.		
	ALTERNATIVE: they do (b) and/or (c) first <u>using a suvat</u> <u>method</u>		
	Assume $y = ax^2 + bx + c$		
	Use any three of (0,0), (120,0) from part (b), (60,22.5) from part (c)		
	or $\frac{dy}{dx} = \frac{3}{4}$ at $x = 0$ to find a, b , and c .		
	M1A1, M1A1, DM1A1* for finding each of <i>a</i> , <i>b</i> and <i>c</i> and stating final answer in correct form.		
	N.B. If they realise that $c = 0$, and just use $y = ax^2 + bx$, that could		
	score M1A1. Enter marks on ePEN in the order in which <i>a</i> , <i>b</i> and <i>c</i> are found:		
	e.g. $x = 0, y = 0 => c = 0$ M1A1		
	$x = 0, \ \frac{dy}{dx} = 2ax + b = \frac{3}{4} = b = \frac{3}{4}$ M1 A1		
	$x = 120, y = 0 \Longrightarrow 0 = 120^{2}a + 120 \times \frac{3}{4} \Longrightarrow a = \frac{-1}{160}$ DM1		
	so, $y = \frac{3}{4}x - \frac{1}{160}x^2$ A1*		
		(6)	
5(b)	ALT 1 $0 = \frac{3}{4}x - \frac{1}{160}x^2$ and solve for x	M1	3.1b
	ALT 2 $\frac{dy}{dx} = \frac{3}{4} - \frac{x}{80} = 0 \implies x = 60 \text{ and } OA = 2 \times 60$		
	ALT 3		

	A complete <i>suvat</i> method to find <i>OA</i> :		
	e.g. $0 = 35 \sin \alpha \times t - \frac{1}{2} g t^2$		
	or $0 = 35\sin\alpha - g\frac{t}{2}$		
	or $-35\sin\alpha = 35\sin\alpha - gt$		
	to find $t \left(=\frac{70\sin\alpha}{g}=\frac{30}{7}\right)$		
	AND $(OA =)35\cos\alpha \times t = 35\cos\alpha \times \frac{70\sin\alpha}{g}$		
	N.B. OR use the calculator to input the equation of the path which then gives $y_{\text{max}} = 45/2$ when $x = 60$ with no working, so $OA = 2 \times 60$		
	(OA =)120 (m)	A1	1.1b
		(2)	
5(c)	ALT 1	M1	3.1b
	$H = \frac{3}{4} \times 60 - \frac{1}{160} \times 60^2$		
	ALT 2 $y = \frac{-1}{160}(x^2 - 120x) = 22.5 - \frac{1}{160}(x - 60)^2$ so max $y = 45/2$ or 22.5		
	ALT 3 $\frac{dy}{dx} = \frac{3}{4} - \frac{2x}{160} = 0 \implies x = 60 \text{ then find } y \text{ when } x = 60$		
	ALT 4		
	A complete <i>suvat</i> method:		
	e.g. $H = \frac{\left(35\sin\alpha\right)^2}{2g}$		
	or		
	$0 = 35 \sin \alpha - gt$ to find the time to top, $t = \frac{35 \sin \alpha}{g}$, or use half their		
	time they found in (b) AND		
	$H = 35\sin\alpha \times \frac{35\sin\alpha}{g} - \frac{1}{2}g\left(\frac{35\sin\alpha}{g}\right)^2 \text{or} \left(\frac{35\sin\alpha+0}{2}\right) \times \frac{35\sin\alpha}{g}$		
	N.B. OR use the calculator to input the equation of the path which then gives		
	$y_{\text{max}} = 45/2$ (when $x = 60$) with no working.		1 11
	(H =) 22.5 Accept 23	A1	1.1b

			(2)	
5(d)		H is greater (or K is smaller), as air resistance would slow the particle down oe.	B1	3.5a
			(1)	
5(e)		e.g. the inaccuracy of using 9.8 m s ^{-2} for g	B1	3.5b
			(1)	
			(12 n	narks)
Not	es:			
5a	M1	Correct terms but condone $\frac{\sin}{\cos s}$ confusion and sign errors Available if they use <i>s</i> instead of <i>x</i>		
	A1	Correct equation in x and t N.B. they may have the wrong value for $\cos \alpha$		
	M1	Correct terms but condone $\frac{\sin}{\cos x}$ confusion and sign errors Available if they use a different letter for y provided it's not the same as for x. N.B. M0 if they subsequently use a value for y e.g. 0	s they've u	ised
	A1	 Correct equation in y and t N.B. they may have the wrong value for sin α They may have t in terms of x, from their first equation. 		
	DM 1	Dependent on the two previous M marks for eliminating <i>t</i> to give an eq only.	uation in y	y and x
	A1*	Given answer correctly obtained, with at least one further line of working ratios and $g = 9.8$ explicitly seen or 4.9 oe used for 0.5g	ng with tri	g
		Allow $y = \frac{3x}{4} - \frac{x^2}{160}$ and with y on the RHS		
5b	M1	 ALT 1: Use of y = 0 in equation of path and solve for x. ALT 2 : Use calculus to find the <i>x</i>-coordinate of the max point and double it ALT 3 : Any other complete <i>suvat</i> method to find <i>OA</i>, condone sin/cos confusion and sign errors 		
	A1	cao		
5c	M1	ALT 1: Use of $x = \left(\frac{1}{2} \times \text{their } OA\right)$ in equation of path		
		ALT 2: Complete the square for the equation of the path and deduce m of y: Need to see $p-q(x-r)^2$ with p as the answer	naximum v	value
		ALT 3: Use $\frac{dy}{dx} = 0$ to find the <i>x</i> -coordinate of the max point and then	use the par	th
		equation to find the <i>y</i> -coordinate ALT 4: Any complete <i>suvat</i> method to find <i>H</i> , condone sin/cos confusi errors	ion and sig	,n

	A1	A0 for $\frac{45}{2}$
5d	B1	Possible justifications for <i>H</i> greater (or <i>K</i> smaller):
		air resistance will provide an extra force acting against the stone or opposing the
		motion
		air resistance would take away energy from the stone
		work would be done against air resistance
		air resistance will mean the acceleration will be less (or deceleration greater)
		air resistance would reduce the velocity/speed
		Allow 'it' for air resistance
		B0 if no justification given.
		B0 for air resistance would reduce the initial velocity of the stone
		B0 for air resistance will limit the vertical height (not a reason) or oppose the vertical
		force.
_		Ignore extras.
5e	B1	Any single correct answer.
		Acceptable answer:
		the inaccuracy of using 9.8 m s ⁻² for g
		or wind or weather effects
		or the spin of the stone
		or the size (or shape or surface area) of the stone oe
		or the stone is still modelled as a particle
		N.B. Allow if the stone is referred to as e.g. a ball
		B0 if any incorrect extras
		Unacceptable answers:
		The model (it) does not take account of:
		the mass or weight of the stone
		air resistance.
		The ground may not be horizontal.
		B0 for consequences of air resistance being included e.g.
		the path won't be a parabola
		the path won't be symmetrical