4.	In this question you must show all stages of your working.	
	Solutions relying entirely on calculator technology are not acceptable.	
	[In this question, i is a unit vector due east and j is a unit vector due north. Position vectors are given relative to a fixed origin O.]	
	At time t seconds, $t \ge 1$, the position vector of a particle P is r metres, where	
	$\mathbf{r} = ct^{\frac{1}{2}}\mathbf{i} - \frac{3}{8}t^2\mathbf{j}$	
	and c is a constant.	
	When $t = 4$, the bearing of P from O is 135°	
	(a) Show that $c = 3$	(3)
	(b) Find the speed of P when $t = 4$	(4)
	When $t = T$, P is accelerating in the direction of $(-\mathbf{i} - 27\mathbf{j})$.	
	(c) Find the value of <i>T</i> .	(4)