Question		n	Answer	Marks	AO	Guidance	
4	(a)			M1	3.1 a	Attempt differentiation	
			$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 + 6x - k$	A1	1.1		
			At $x=2$ there is a stationary point, so $\frac{dy}{dx}=0$	E1	2.1	Explain the substitution step	
			$6 \times 2^2 + 6 \times 2 - k = 0$	M1	1.1 a	Substitute $x = 2$ in their $\frac{dy}{dx} = 0$	
			<i>k</i> = 36	A1FT	1.1	FT their $\frac{dy}{dx} = 0$	
				[5]			
4 ((b)		$\frac{d^2 y}{dx^2} = 12x + 6$ and $12 \times 2 + 6 (= 30)$	M1	1.1	Attempt differentiation again and	OR
						substitute $x = 2$, FT their $\frac{dy}{dx}$	M1 Attempt to evaluate gradient or <i>y</i> either side
			$\frac{d^2 y}{dr^2} > 0$ hence minimum	A1FT	2.2a	Correct conclusion FT www from their	A1 Correct values and conclusion
			dx^2			$\frac{d^2 y}{dr^2}$ at $x = 2$	conclusion
						dx	M1 For a complete sketch
							(all intercepts and both
							turning points identified)
							A1 for conclusion given.
				[2]			