Question	n Answ	Answer		AO	Guidance	
5	N = 3k + 1	or $N = 3k + 2$	M1	3.1a	One of these. Allow without "N = "	Any letter other than <i>p</i>
	(where k is an integer) $(3k+1)^2$ $= 9k^2 + 6k + 1$	$(3k+2)^2 = 9k^2 + 12k + 4$	M1 A1	1.1 2.1	Attempt one of these Both correct	Allow p Allow p
	$= 3(3k^2 + 2k) + 1 \text{ or } = 3$	$= 3(3k^2 + 2k) + 1 \text{ or } = 3(3k^2 + 4k + 1) + 1$		2.4	Or $9k^2+6k$ div by 3 or $9k^2+12k+3$ div by 3	or similar in words. Allow p
	Both these are of form 3	3p+1, p an integer	E 1	2.2a	One of these Must say p is integer or $3k^2 + 2k$ and $3k^2 + 4k + 1$ are integers	Dep on M1M1A1A1
			[5]		Similar marks for method using $N = 3k + 1$ & $N = 3k - 1$	N = 3p + 1: max M0M1A1A1E0