

M1 3.1a Attempt factorise **1.1** Correct factors and > 0 or y > 0A1 Any notation. Allow "and", "or", comma etc But NOT -3 < x > 2A1 1.1 x < -3, x > 2 seen, with no working or muddled working; SC B1 Allow () instead of $\{\}$ Allow $x \in (-\infty, -3) \cup (2, \infty)$ B1ft 2.5 ft their factors, dep two separate ranges. [4]

Question		n	Answer	Marks	AO	Guidance
6	(b)		DR $(x^{\frac{3}{2}} + 1)(x^{\frac{3}{2}} - 8) = 0$	M1	1.1	Attempt factors of form $(x^{\frac{3}{2}} \pm k)$ or $(y \pm k)$ or $(y + 1)(y - 8)$ or $y = -1$ or $y = 8$ AND $y = x^{\frac{3}{2}}$ soi Allow $(x + 1)(x - 8)$ AND $x = x^{\frac{3}{2}}$ seen
			$x^{\frac{3}{2}} = -1$ gives no solution	B1	3.2b	Condone inadequate reason
			$x^{\frac{3}{2}} = 8$ or $x^3 = 64$	A1	1.1	y = 8 not enough for this mark
			x = 4	A1 [4]	1.1	Indep of previous A1
6	(c)		DR $\ln[(3^{x})^{2}] = \ln[3 \times 2^{x}]$ $2\ln(3^{x})$ or $\ln(3^{2x})$ or $x\ln(3^{2})$ or $\ln(9^{x})$ or $2x\ln3$ $= \ln3 + \ln(2^{x})$ oe $2x\ln3$ or $x\ln9 = \ln3 + x\ln2$ $x = \frac{\ln3}{\ln\frac{9}{2}}$ Alternative methods $\ln(3^{2x-1}) = \ln(2^{x})$ or $\log_{3}(2^{x}) = 2x - 1$ M1 $(2x - 1)\ln3 = x\ln2$ or $x\log_{3}2 = 2x - 1$ A1 A1 A1	M1 A1 A1 A1 A1	3.1a 1.1 1.1 2.1 2.2a	Attempt take logs.Allow errors, eg RHS = $\ln 3 \times \ln(2^x)$ LHS correct after one further stepRHS correct after one further stepBoth sides correct with x removed from indexor any equivalent correct form e.g. $\frac{1}{2 - \log_3 2}$ Must be exact ISWAttempt take logs.LHS correct after one further stepRHS correct after one further stepBoth sides correct with x removed from index
			$x = \frac{\ln 3}{2\ln 3 - \ln 2} \qquad \text{or } x = \frac{1}{2 - \log_3 2} \qquad \text{A1}$ $9^x = 3 \times 2^x \qquad \qquad \text{M1}$ $\left(\frac{9}{2}\right)^x = 3 \qquad \qquad \text{M1}$ $4.5^x = 3 \qquad \qquad \text{A1A1}$ $x = \log_{4.5}(3) \qquad \qquad \text{A1}$	[5]		ISW Divide by 2^x and arrange into $a^x = b$ form A1 for each side correct ISW
				[5]		